Robots

KR 1000 1300 titan PA, KR 1000 L950 titan PA

with F variants and KR C2

Specification
Subject to technical alterations without an effect on the function.

Translation of the original documentation
KIM-PS5-DOC

Publication: Pub Spez KR 1000 titan PA en
Book structure: Spez KR 1000 titan PA V6.1
Version: Spez KR 1000 titan PA V6
Contents

1 Introduction ... 5
 1.1 Industrial robot documentation .. 5
 1.2 Representation of warnings and notes .. 5

2 Purpose ... 7
 2.1 Target group .. 7
 2.2 Intended use .. 7

3 Product description .. 9
 3.1 Overview of the industrial robot .. 9
 3.2 Description of the robot ... 9

4 Technical data .. 13
 4.1 Basic data, KR 1000 1300 titan PA .. 13
 4.2 Basic data, KR 1000 L950 titan PA .. 15
 4.3 Axis data .. 17
 4.4 Payloads, KR 1000 1300 titan PA .. 20
 4.5 Payloads, KR 1000 L950 titan PA .. 23
 4.6 Mounting base data ... 26
 4.7 REACH duty to communicate information acc. to Art. 33 of Regulation (EC) 1907/2006 28
 4.8 Plates and labels .. 28
 4.9 Stopping distances and times .. 31
 4.9.1 General information .. 31
 4.9.2 Terms used ... 32
 4.9.3 Stopping distances and stopping times, KR 1000 1300 titan PA 33
 4.9.3.1 Stopping distances and stopping times for STOP 0, axis 1 to axis 3 33
 4.9.3.2 Stopping distances and stopping times for STOP 1, axis 1 34
 4.9.3.3 Stopping distances and stopping times for STOP 1, axis 2 36
 4.9.3.4 Stopping distances and stopping times for STOP 1, axis 3 38
 4.9.4 Stopping distances and times, KR 1000 L950 titan PA 38
 4.9.4.1 Stopping distances and stopping times for STOP 0, axis 1 to axis 3 38
 4.9.4.2 Stopping distances and stopping times for STOP 1, axis 1 39
 4.9.4.3 Stopping distances and stopping times for STOP 1, axis 2 41
 4.9.4.4 Stopping distances and stopping times for STOP 1, axis 3 43

5 Safety ... 45
 5.1 General .. 45
 5.1.1 Liability .. 45
 5.1.2 Intended use of the industrial robot ... 46
 5.1.3 EC declaration of conformity and declaration of incorporation 46
 5.1.4 Terms used ... 47
 5.2 Personnel ... 47
 5.3 Workspace, safety zone and danger zone ... 48
 5.4 Overview of protective equipment .. 49
 5.4.1 Mechanical end stops ... 49
 5.4.2 Mechanical axis range limitation (optional) ... 49
 5.4.3 Axis range monitoring (optional) .. 49
 5.4.4 Options for moving the manipulator without drive energy 50
5.4.5 Labeling on the industrial robot ... 50
5.5 Safety measures ... 51
5.5.1 General safety measures .. 51
5.5.2 Transportation .. 52
5.5.3 Start-up and recommissioning ... 52
5.5.4 Manual mode ... 54
5.5.5 Automatic mode .. 54
5.5.6 Maintenance and repair .. 55
5.5.7 Decommissioning, storage and disposal .. 56
5.6 Applied norms and regulations .. 56
6 Planning ... 59
6.1 Information for planning .. 59
6.2 Mounting base with centering ... 59
6.3 Machine frame mounting ... 62
6.4 Connecting cables and interfaces .. 63
7 Transportation .. 65
7.1 Transporting the robot ... 65
8 KUKA Service .. 71
8.1 Requesting support ... 71
8.2 KUKA Customer Support .. 71

Index .. 79
1 Introduction

1.1 Industrial robot documentation

The industrial robot documentation consists of the following parts:

- Documentation for the manipulator
- Documentation for the robot controller
- Operating and programming instructions for the System Software
- Instructions for options and accessories
- Parts catalog on storage medium

Each of these sets of instructions is a separate document.

1.2 Representation of warnings and notes

Safety

These warnings are relevant to safety and must be observed.

- **DANGER** These warnings mean that it is certain or highly probable that death or severe injuries will occur, if no precautions are taken.

- **WARNING** These warnings mean that death or severe injuries may occur, if no precautions are taken.

- **CAUTION** These warnings mean that minor injuries may occur, if no precautions are taken.

- **NOTICE** These warnings mean that damage to property may occur, if no precautions are taken.

These warnings contain references to safety-relevant information or general safety measures. These warnings do not refer to individual hazards or individual precautionary measures.

This warning draws attention to procedures which serve to prevent or remedy emergencies or malfunctions:

- **SAFETY INSTRUCTIONS** Procedures marked with this warning must be followed exactly.

Notices

These notices serve to make your work easier or contain references to further information.

- **Tip** to make your work easier or reference to further information.
2 Purpose

2.1 Target group

This documentation is aimed at users with the following knowledge and skills:

- Advanced knowledge of mechanical engineering
- Advanced knowledge of electrical and electronic systems
- Knowledge of the robot controller system

For optimal use of our products, we recommend that our customers take part in a course of training at KUKA College. Information about the training program can be found at www.kuka.com or can be obtained directly from our subsidiaries.

2.2 Intended use

Use

The industrial robot is intended for handling tools and fixtures, or for processing or transferring components or products. Use is only permitted under the specified environmental conditions.

Misuse

Any use or application deviating from the intended use is deemed to be misuse and is not allowed. This includes e.g.:

- Transportation of persons and animals
- Use as a climbing aid
- Operation outside the permissible operating parameters
- Use in potentially explosive environments
- Use in underground mining

Changing the structure of the manipulator, e.g. by drilling holes, etc., can result in damage to the components. This is considered improper use and leads to loss of guarantee and liability entitlements.

Deviations from the operating conditions specified in the technical data or the use of special functions or applications can lead to premature wear. KUKA Roboter GmbH must be consulted.

The robot system is an integral part of a complete system and may only be operated in a CE-compliant system.
3 Product description

3.1 Overview of the industrial robot

The industrial robot consists of the following components:
- Manipulator
- Robot controller
- Teach pendant
- Connecting cables
- Software
- Options, accessories

Fig. 3-1: Example of an industrial robot

1 Manipulator 4 Teach pendant (KCP)
2 Top-mounted cabinet 5 Connecting cables
3 Robot controller

3.2 Description of the robot

Overview

The robots are designed as 6-axis jointed-arm kinematic systems. The structural components of the robot are made of iron castings. The design and structure of the robot variants KR 1000 titan and KR 1000 titan PA are identical. The robot may only be operated in palletizing mode with the specified rated payloads.

The robot consists of the following principal components:
- In-line wrist
- Arm
- Link arm
- Rotating column
- Base frame
- Counterbalancing system
- Electrical installations
The robot is fitted with a 3-axis in-line wrist. The in-line wrist comprises axes 4, 5 and 6. It is driven by 3 motors installed at the rear end of the arm via connecting shafts. For attaching end effectors (tools), the in-line wrist has a mounting flange. The gear units of the in-line wrist are supplied with oil from 3 separate oil chambers. The robot can be equipped with an in-line wrist for a rated payload of 1000 kg or 750 kg, depending on the variant. The 1000 kg in-line wrist is used in palletizing mode with a rated payload of 1300 kg. The 750 kg in-line wrist is 400 mm longer and can be operated with a rated payload of 950 kg.

If the robot is used in palletizing mode, axis 4 is deactivated and axis 5 is always kept parallel to the robot mounting plane, depending on the specific program.

Additional measures have been taken to enable in-line wrists of the F variants to meet higher specifications in terms of resistance to temperature, dust and corrosion. F variant in-line wrists meet the requirements of IP 67.

The arm is the link between the in-line wrist and the link arm. It houses the motors of the wrist axes A4, A5 and A6 and the motors of main axis A3. The arm is driven by the 2 motors of axis 3, which drive the gear unit between the arm and the link arm via an input stage. The maximum permissible swivel angle is mechanically limited by a stop for each direction, plus and minus. The associated buffers are attached to the arm.

The arms of the F variants are pressurized to prevent penetration of moisture and dust. The required compressed air is supplied via a hose in the cable har-
ness. The pressure regulator for this is installed in the push-in module for the electrical installations.

Link arm

The link arm is the assembly located between the arm and the rotating column. It is mounted in the rotating column with a gear unit on each side and is driven by 2 motors. The two motors engage with an input stage before driving both gear units via a shaft.

Rotating column

The rotating column houses the motors of axes 1 and 2. The rotational motion of axis 1 is performed by the rotating column. It is screwed to the base frame via the gear unit of axis 1. The motors for driving axis 1 are mounted inside the rotating column. The bearings of the counterbalancing system are situated at the rear.

Electrical installations

For this robot, two variants of the electrical installations are available, for the standard and Safe cable sets. In the standard variant, the junction boxes and the motor terminal box are mounted on the base frame. In the second variant, all the junction boxes are permanently connected to the robot via 15 m cables, allowing the robot to be connected at a distance from its site of installation. The wiring diagrams and connector pin allocation are the same for both variants.

The electrical installations are described in Chapter .

Base frame

The base frame is the base of the robot. It is screwed to the mounting base. The interfaces for the electrical installations and the energy supply systems (accessory) are housed in the base frame. For transportation by fork lift truck, fork slots are provided on the base frame.

Counterbalancing system

The counterbalancing system is installed between the rotating column and the link arm and serves to minimize the moments generated about axis 2 when the robot is in motion and at rest. A closed, hydropneumatic system is used. The system consists of 2 diaphragm accumulators and a cylinder with associated hoses, pressure gauge and safety valve.

When the link arm is vertical, the counterbalancing system has no effect. With increasing deflection in the plus or minus direction, the hydraulic oil is pressed into the two diaphragm accumulators, thereby generating the necessary counterforce to compensate the moment of the axis. The diaphragm accumulators are filled with nitrogen.

Different variants of the counterbalancing system are used for F variant robots. These variants are characterized by their improved resistance to dust, temperature and humidity.
4 Technical data

4.1 Basic data, KR 1000 1300 titan PA

<table>
<thead>
<tr>
<th>Basic data</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>KR 1000 1300 titan PA</td>
</tr>
<tr>
<td>Number of axes</td>
<td>4</td>
</tr>
<tr>
<td>Volume of working envelope</td>
<td>69.5 m³</td>
</tr>
<tr>
<td>Pose repeatability (ISO 9283)</td>
<td>±0.10 mm</td>
</tr>
<tr>
<td>Work envelope reference point</td>
<td>Intersection of the center of the mounting flange face with axis 6</td>
</tr>
<tr>
<td>Weight</td>
<td>approx. 4,690 kg</td>
</tr>
<tr>
<td>Principal dynamic loads</td>
<td>See “Loads acting on the mounting base”</td>
</tr>
<tr>
<td>Protection rating of the robot</td>
<td>IP65</td>
</tr>
<tr>
<td>Protection rating of the in-line wrist</td>
<td>IP65</td>
</tr>
<tr>
<td>Protection rating of the F in-line wrist</td>
<td>IP67</td>
</tr>
<tr>
<td>Sound level</td>
<td>< 75 dB (A) outside the working envelope</td>
</tr>
<tr>
<td>Mounting position</td>
<td>Floor</td>
</tr>
<tr>
<td>Surface finish, paintwork</td>
<td>Base (stationary): black (RAL 9005); moving parts: KUKA orange 2567</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Transport dimensions</th>
<th>Without buffer A2</th>
<th>With buffer A2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>2,123 mm</td>
<td>2,106 mm</td>
</tr>
<tr>
<td>Width</td>
<td>1,420 mm</td>
<td>1,420 mm</td>
</tr>
<tr>
<td>Height</td>
<td>2,371 mm</td>
<td>2,543 mm</td>
</tr>
<tr>
<td>These dimensions refer to the robot only, without wooden transport blocks.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Transport dimensions with transport frame</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>4,000 mm</td>
</tr>
<tr>
<td>Width</td>
<td>1,750 mm</td>
</tr>
<tr>
<td>Height</td>
<td>2,191 mm</td>
</tr>
<tr>
<td>Height with lifting tackle</td>
<td>3,500 mm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Foundry robots</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Overpressure in the arm</td>
<td>0.01 MPa (0.1 bar)</td>
</tr>
<tr>
<td>Compressed air</td>
<td>Free of oil and water</td>
</tr>
<tr>
<td></td>
<td>Class 4 in accordance with ISO 8573-1</td>
</tr>
<tr>
<td>Compressed air supply line</td>
<td>Air line in the cable set</td>
</tr>
<tr>
<td>Air consumption</td>
<td>0.1 m³/h</td>
</tr>
<tr>
<td>Air line connection</td>
<td>Quick Star push-in fitting for hose PLN-6x1, black</td>
</tr>
</tbody>
</table>
Ambient temperature

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Operation</td>
<td>273 K to 328 K (0 °C to +55 °C)</td>
</tr>
<tr>
<td>Operation with Safe RDC</td>
<td>273 K to 323 K (0 °C to +50 °C)</td>
</tr>
<tr>
<td>Storage and transportation</td>
<td>233 K to 333 K (-40 °C to +60 °C)</td>
</tr>
<tr>
<td>Start-up</td>
<td>273 K to 288 K (0 °C to +15 °C)</td>
</tr>
<tr>
<td></td>
<td>At these temperatures the robot may have to be warmed up before normal operation. Other temperature limits available on request.</td>
</tr>
<tr>
<td>Humidity rating</td>
<td>DIN EN 60721-3-3, Class 3K3</td>
</tr>
</tbody>
</table>

Connecting cables

<table>
<thead>
<tr>
<th>Cable designation</th>
<th>Connector designation</th>
<th>Interface with robot</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor cable 1</td>
<td>X20.1 - X30.1</td>
<td>Rectangular connector, size 24</td>
</tr>
<tr>
<td>Motor cable 2</td>
<td>X20.2 - X30.2</td>
<td>Rectangular connector, size 24</td>
</tr>
<tr>
<td>Motor cable 3</td>
<td>X20.3 - X30.3</td>
<td>Rectangular connector, size 24</td>
</tr>
<tr>
<td>Control cable 1, A1/A2</td>
<td>XA21 - X31.2</td>
<td>Circular connector M23</td>
</tr>
<tr>
<td>Control cable 2, A1/A2</td>
<td>X21.1 - X41</td>
<td>Circular connector M23</td>
</tr>
<tr>
<td>Safe control cable</td>
<td>X21 - X31</td>
<td>Circular connector M23</td>
</tr>
<tr>
<td>Ground conductor</td>
<td></td>
<td>Ring cable lug, 8 mm</td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cable lengths</td>
<td>Standard 15 m, 25 m, 35 m, 50 m</td>
</tr>
<tr>
<td></td>
<td>with RoboTeam 15 m, 25 m, 35 m</td>
</tr>
<tr>
<td></td>
<td>with SafeRobot 15 m, 25 m, 35 m</td>
</tr>
</tbody>
</table>

For detailed specifications of the connecting cables, see (>>> 6.4 “Connecting cables and interfaces” Page 63).
If the connecting cables are longer than 25 m, a 16 mm² ground conductor must be installed.

4.2 Basic data, KR 1000 L950 titan PA

<table>
<thead>
<tr>
<th>Basic data</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>KR 1000 L950 titan PA</td>
<td></td>
</tr>
<tr>
<td>Number of axes</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Volume of working envelope</td>
<td>102.5 m³</td>
<td></td>
</tr>
<tr>
<td>Pose repeatability (ISO 9283)</td>
<td>±0.10 mm</td>
<td></td>
</tr>
<tr>
<td>Work envelope reference point</td>
<td>Intersection of the center of the mounting flange face with axis 6</td>
<td></td>
</tr>
<tr>
<td>Weight</td>
<td>approx. 4,740 kg</td>
<td></td>
</tr>
<tr>
<td>Principal dynamic loads</td>
<td>See “Loads acting on the mounting base”</td>
<td></td>
</tr>
<tr>
<td>Protection rating of the robot</td>
<td>IP65 ready for operation, with connecting cables plugged in (according to EN 60529)</td>
<td></td>
</tr>
<tr>
<td>Protection rating of the in-line wrist</td>
<td>IP65</td>
<td></td>
</tr>
<tr>
<td>Protection rating of the F in-line wrist</td>
<td>IP67</td>
<td></td>
</tr>
<tr>
<td>Sound level</td>
<td>< 75 dB (A) outside the working envelope</td>
<td></td>
</tr>
<tr>
<td>Mounting position</td>
<td>Floor</td>
<td></td>
</tr>
<tr>
<td>Surface finish, paintwork</td>
<td>Base (stationary): black (RAL 9005); moving parts: KUKA orange 2567</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Transport dimensions</th>
<th>Without buffer A2</th>
<th>With buffer A2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>2,506 mm</td>
<td>2,506 mm</td>
</tr>
<tr>
<td>Width</td>
<td>1,420 mm</td>
<td>1,420 mm</td>
</tr>
<tr>
<td>Height</td>
<td>2,371 mm</td>
<td>2,543 mm</td>
</tr>
</tbody>
</table>

These dimensions refer to the robot only, without wooden transport blocks.

<table>
<thead>
<tr>
<th>Transport dimensions with transport frame</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>4,000 mm</td>
<td></td>
</tr>
<tr>
<td>Width</td>
<td>1,750 mm</td>
<td></td>
</tr>
<tr>
<td>Height</td>
<td>2,191 mm</td>
<td></td>
</tr>
<tr>
<td>Height with lifting tackle</td>
<td>3,500 mm</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Foundry robots</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Overpressure in the arm</td>
<td>0.01 MPa (0.1 bar)</td>
<td></td>
</tr>
<tr>
<td>Compressed air</td>
<td>Free of oil and water</td>
<td>Class 4 in accordance with ISO 8573-1</td>
</tr>
<tr>
<td>Compressed air supply line</td>
<td>Air line in the cable set</td>
<td></td>
</tr>
<tr>
<td>Air consumption</td>
<td>0.1 m³/h</td>
<td></td>
</tr>
<tr>
<td>Air line connection</td>
<td>Quick Star push-in fitting for hose PLN-6x1, black</td>
<td></td>
</tr>
<tr>
<td>Ambient temperature</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>--------------------------</td>
<td></td>
</tr>
<tr>
<td>Operation</td>
<td>273 K to 328 K (0 °C to +55 °C)</td>
<td></td>
</tr>
<tr>
<td>Operation with Safe RDC</td>
<td>273 K to 323 K (0 °C to +50 °C)</td>
<td></td>
</tr>
<tr>
<td>Storage and transportation</td>
<td>233 K to 333 K (-40 °C to +60 °C)</td>
<td></td>
</tr>
<tr>
<td>Start-up</td>
<td>273 K to 288 K (0 °C to +15 °C) At these temperatures the robot may have to be warmed up before normal operation. Other temperature limits available on request.</td>
<td></td>
</tr>
<tr>
<td>Humidity rating</td>
<td>DIN EN 60721-3-3, Class 3K3</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Connecting cables</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cable designation</td>
<td>Connector designation</td>
</tr>
<tr>
<td>Motor cable 1</td>
<td>X20.1 - X30.1</td>
</tr>
<tr>
<td>Motor cable 2</td>
<td>X20.2 - X30.2</td>
</tr>
<tr>
<td>Motor cable 3</td>
<td>X20.3 - X30.3</td>
</tr>
<tr>
<td>Control cable 1, A1/A2</td>
<td>XA21 - X31.2</td>
</tr>
<tr>
<td>Control cable 2, A1/A2</td>
<td>X21.1 - X41</td>
</tr>
<tr>
<td>Safe control cable</td>
<td>X21 - X31</td>
</tr>
<tr>
<td>Ground conductor</td>
<td>Ring cable lug, 8 mm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cable lengths</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard</td>
<td>15 m, 25 m, 35 m, 50 m</td>
</tr>
<tr>
<td>with RoboTeam</td>
<td>15 m, 25 m, 35 m</td>
</tr>
<tr>
<td>with SafeRobot</td>
<td>15 m, 25 m, 35 m</td>
</tr>
</tbody>
</table>

For detailed specifications of the connecting cables, see .

If the connecting cables are longer than 25 m, a 16 mm² ground conductor must be installed.
4.3 Axis data

The following data are valid for the robots KR 1000 1300 titan PA and KR 1000 L950 titan PA.

Axis data

<table>
<thead>
<tr>
<th>Axis</th>
<th>Range of motion, software-limited</th>
<th>Speed with rated payload</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+/-150°</td>
<td>58 °/s</td>
</tr>
<tr>
<td>2</td>
<td>+17.5° to -130°</td>
<td>50 °/s</td>
</tr>
<tr>
<td>3</td>
<td>+145° to -110°; in palletizing mode +62° to +145°</td>
<td>50 °/s</td>
</tr>
<tr>
<td>5</td>
<td>+/-118° program-dependent, parallel to the robot mounting plane</td>
<td>60 °/s</td>
</tr>
<tr>
<td>6</td>
<td>+/-350°</td>
<td>72 °/s</td>
</tr>
</tbody>
</table>

The direction of motion and the arrangement of the individual axes may be noted from the diagram (Fig. 4-1). Axis 5 is in palletizing mode.

Fig. 4-1: Direction of rotation of robot axes

The diagrams (Fig. 4-2) and (Fig. 4-3) show the shape and size of the working envelopes.
Fig. 4-2: Working envelope, KR 1000 1300 titan PA
Fig. 4-3: Working envelope, KR 1000 L950 titan PA

The reference point for the working envelope is the intersection of the mounting flange face with axis 6.
4.4 Payloads, KR 1000 1300 titan PA

Payloads

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Robot</td>
<td>KR 1000 1300 titan PA</td>
<td></td>
</tr>
<tr>
<td>In-line wrist</td>
<td>IW 1000</td>
<td></td>
</tr>
<tr>
<td>Rated payload</td>
<td>1,300 kg</td>
<td></td>
</tr>
<tr>
<td>Distance of the load center of gravity L_z</td>
<td>400 mm</td>
<td></td>
</tr>
<tr>
<td>Distance of the load center of gravity L_{xy}</td>
<td>150 mm</td>
<td></td>
</tr>
<tr>
<td>Permissible moment of inertia</td>
<td>500 kgm²</td>
<td></td>
</tr>
<tr>
<td>Max. total load = Payload + Supplementary load</td>
<td>1,350 kg</td>
<td></td>
</tr>
<tr>
<td>Supplementary load, arm</td>
<td>100 kg</td>
<td></td>
</tr>
<tr>
<td>Supplementary load, link arm</td>
<td>0 kg</td>
<td></td>
</tr>
<tr>
<td>Supplementary load, rotating column</td>
<td>0 kg</td>
<td></td>
</tr>
<tr>
<td>Supplementary load, base frame</td>
<td>0 kg</td>
<td></td>
</tr>
</tbody>
</table>

Load center of gravity P

For all payloads, the load center of gravity refers to the distance from the face of the mounting flange on axis 6. Refer to the payload diagram for the nominal distance.

Payload diagram

NOTICE

This loading curve corresponds to the maximum load capacity. Both values (payload and mass moment of inertia) must be checked in all cases. Exceeding this capacity will reduce the service life of the robot and overload the motors and the gears; in any such case the KUKA Roboter GmbH must be consulted beforehand. The values determined here are necessary for planning the robot application. For commissioning the robot, additional input data are required in accordance with the operating and programming instructions of the KUKA System Software. The mass inertia must be verified using KUKA.Load. It is imperative for the load data to be entered in the robot controller!
Mounting flange

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mounting flange</td>
<td>similar to DIN/ISO 9409-1-A200*</td>
</tr>
<tr>
<td>Screw grade</td>
<td>10.9</td>
</tr>
<tr>
<td>Screw size</td>
<td>M16</td>
</tr>
<tr>
<td>Grip length</td>
<td>1.5 x nominal diameter</td>
</tr>
<tr>
<td>Depth of engagement</td>
<td>min. 24 mm, max. 25 mm</td>
</tr>
<tr>
<td>Locating element</td>
<td>12 H7</td>
</tr>
</tbody>
</table>

*The inner locating diameter is ø 160 H7. This deviates from the standard.

The mounting flange is depicted (>>> "Mounting flange" Page 21) with axes 4 and 6 in the zero position. The symbol X_m indicates the position of the locating element (bushing) in the zero position.
Supplementary load

The robot can carry supplementary loads on the arm. When mounting the supplementary loads, be careful to observe the maximum permissible total load. If an energy supply system A3 - A6 is used, the maximum supplementary load is reduced by the mass of the energy supply system. The dimensions and positions of the installation options can be seen in the diagram (>>> Fig. 4-6). All other threads and holes on the robot are not suitable for attaching additional loads.

Fig. 4-5: Mounting flange
4.5 Payloads, KR 1000 L950 titan PA

<table>
<thead>
<tr>
<th>Payloads</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Robot</td>
<td>KR 1000 L950 titan PA</td>
</tr>
<tr>
<td>In-line wrist</td>
<td>IW 750</td>
</tr>
<tr>
<td>Rated payload</td>
<td>950 kg</td>
</tr>
<tr>
<td>Distance of the load center of gravity L_z</td>
<td>400 mm</td>
</tr>
<tr>
<td>Distance of the load center of gravity L_{xy}</td>
<td>150 mm</td>
</tr>
<tr>
<td>Permissible moment of inertia</td>
<td>500 kgm^2</td>
</tr>
<tr>
<td>Max. total load = Payload + Supplementary load</td>
<td>1,000 kg</td>
</tr>
<tr>
<td>Supplementary load, arm</td>
<td>100 kg</td>
</tr>
<tr>
<td>Supplementary load, link arm</td>
<td>0 kg</td>
</tr>
<tr>
<td>Supplementary load, rotating column</td>
<td>0 kg</td>
</tr>
<tr>
<td>Supplementary load, base frame</td>
<td>0 kg</td>
</tr>
</tbody>
</table>

For all payloads, the load center of gravity refers to the distance from the face of the mounting flange on axis 6. Refer to the payload diagram for the nominal distance.
Payload diagram

NOTICE This loading curve corresponds to the maximum load capacity. Both values (payload and mass moment of inertia) must be checked in all cases. Exceeding this capacity will reduce the service life of the robot and overload the motors and the gears; in any such case the KUKA Roboter GmbH must be consulted beforehand.

The values determined here are necessary for planning the robot application. For commissioning the robot, additional input data are required in accordance with the operating and programming instructions of the KUKA System Software.

The mass inertia must be verified using KUKA.Load. It is imperative for the load data to be entered in the robot controller!

Fig. 4-7: Payload diagram for KR 1000 L950 titan PA

Mounting flange

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mounting flange</td>
<td>similar to DIN/ISO 9409-1-A200*</td>
</tr>
<tr>
<td>Screw grade</td>
<td>10.9</td>
</tr>
<tr>
<td>Screw size</td>
<td>M16</td>
</tr>
<tr>
<td>Grip length</td>
<td>1.5 x nominal diameter</td>
</tr>
<tr>
<td>Depth of engagement</td>
<td>min. 24 mm, max. 25 mm</td>
</tr>
<tr>
<td>Locating element</td>
<td>12 H7</td>
</tr>
</tbody>
</table>

The inner locating diameter is ø 160 H7. This deviates from the standard.
The mounting flange is depicted (>>> "Mounting flange" Page 24) with axes 4 and 6 in the zero position. The symbol X_m indicates the position of the locating element (bushing) in the zero position.

Fig. 4-8: Mounting flange

Supplementary load

The robot can carry supplementary loads on the arm. When mounting the supplementary loads, be careful to observe the maximum permissible total load. If an energy supply system A3 - A6 is used, the maximum supplementary load is reduced by the mass of the energy supply system. The dimensions and positions of the installation options can be seen in the diagram (>>> Fig. 4-9). All other threads and holes on the robot are not suitable for attaching additional loads.
4.6 Mounting base data

Loads acting on the mounting base

The specified forces and moments already include the payload and the inertia force (weight) of the robot.

Fig. 4-9: Supplementary load, arm

1. Mounting surface on arm
2. Interference contour, axis 3
Grade of concrete for foundations

When producing foundations from concrete, observe the load-bearing capacity of the ground and the country-specific construction regulations. There must be no layers of insulation or screed between the bedplates and the concrete foundation. The quality of the concrete must meet the requirements of the following standard:

### Type of load	Force/torque/mass
F_v = vertical force | F_{v norm} = 61,500 N
F_{v max} = 70,000 N
F_h = horizontal force | F_{h norm} = 21,400 N
F_{h max} = 35,500 N
M_k = tilting moment | M_{k norm} = 102,200 Nm
M_{k max} = 133,700 Nm
M_r = torque | M_{r norm} = 36,600 Nm
M_{r max} = 99,700 Nm
Total mass for load acting on the mounting base | 6,000 kg
Robot | KR 1000 1300 titan PA, 4,690 kg
KR 1000 L950 titan, 4,740 kg
Total load for foundation load | 1,350 kg for KR 1000 1300 titan PA
1,000 kg for KR 1000 L950 titan PA

NOTICE
The foundation loads specified in the table are the maximum loads that may occur. They must be referred to when dimensioning the foundations and must be adhered to for safety reasons. Failure to do so may result in material damage.
The supplementary loads are not taken into consideration in the calculation of the foundation load. These supplementary loads must be taken into consideration for F_v.

Fig. 4-10: Loads acting on the foundation
4.7 **REACH duty to communicate information acc. to Art. 33 of Regulation (EC) 1907/2006**

On the basis of the information provided by our suppliers, this product and its components contain no substances included on the Candidate List of Substances of Very High Concern (SVHCs) in a concentration exceeding 0.1 percent by mass.

4.8 **Plates and labels**

Plates and labels
The following plates and labels are attached to the robot. They must not be removed or rendered illegible. Illegible plates and labels must be replaced.

Fig. 4-11: Location of plates and labels

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
</table>
| 1 | High voltage
Any improper handling can lead to contact with current-carrying components. Electric shock hazard! |
| 2 | Hot surface
During operation of the robot, surface temperatures may be reached that could result in burn injuries. Protective gloves must be worn! |
Secure the axes

Before exchanging any motor or counterbalancing system, secure the corresponding axis through safeguarding by suitable means/devices to protect against possible movement. The axis can move. Risk of crushing!

Work on the robot

Before start-up, transportation or maintenance, read and follow the assembly and operating instructions.

Transport position

Before loosening the bolts of the mounting base, the robot must be in the transport position as indicated in the table. Risk of toppling!

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CAUTION</td>
<td>Before removing the motor or counterbalancing system, secure robot axis to prevent it from moving!</td>
</tr>
<tr>
<td>ATTENTION</td>
<td>Avant de retirer le moteur ou le système d'équilibrage, protéger l'axe du robot pour éviter tout mouvement!</td>
</tr>
<tr>
<td>VORSICHT</td>
<td>Vor Entfernen des Motors oder des Gewichtsausgleichs, Roboterachse gegen Bewegungen sichern!</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>CAUTION</td>
<td>Secure the system before beginning work on the robot. Read and observe the safety instructions!</td>
</tr>
<tr>
<td>ATTENTION</td>
<td>Bloquer le système avant d’effectuer des travaux sur le robot. Lire et respecter les remarques relatives à la sécurité!</td>
</tr>
<tr>
<td>VORSICHT</td>
<td>Vor Arbeiten am Roboter, System sichern. Sicherheitshinweise lesen und beachten!</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>CAUTION</td>
<td>Move the robot into its transport position before removing the mounting base!</td>
</tr>
<tr>
<td>ATTENTION</td>
<td>Amener le robot en position de transport avant de défaire la fixation aux fondations!</td>
</tr>
<tr>
<td>VORSICHT</td>
<td>Roboter vor Lösen der Fundamentbefestigung in Transportstellung bringen!</td>
</tr>
</tbody>
</table>
Danger zone
Entering the danger zone of the robot is prohibited if the robot is in operation or ready for operation. Risk of injury!

Mounting flange on in-line wrist
The values specified on this plate apply for the installation of tools on the mounting flange of the wrist and must be observed.
4.9 Stopping distances and times

4.9.1 General information

Information concerning the data:

- The stopping distance is the angle traveled by the robot from the moment the stop signal is triggered until the robot comes to a complete standstill.
- The stopping time is the time that elapses from the moment the stop signal is triggered until the robot comes to a complete standstill.
- The data are given for the main axes A1, A2 and A3. The main axes are the axes with the greatest deflection.
- Superposed axis motions can result in longer stopping distances.
- Stopping distances and stopping times in accordance with DIN EN ISO 10218-1, Annex B.
- Stop categories:
 - Stop category 0 » STOP 0
 - Stop category 1 » STOP 1
 according to IEC 60204-1
- The values specified for Stop 0 are guide values determined by means of tests and simulation. They are average values which conform to the re-
requirements of DIN EN ISO 10218-1. The actual stopping distances and stopping times may differ due to internal and external influences on the braking torque. It is therefore advisable to determine the exact stopping distances and stopping times where necessary under the real conditions of the actual robot application.

- Measuring technique
 The stopping distances were measured using the robot-internal measuring technique.

- The wear on the brakes varies depending on the operating mode, robot application and the number of STOP 0 triggered. It is therefore advisable to check the stopping distance at least once a year.

4.9.2 Terms used

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>m</td>
<td>Mass of the rated load and the supplementary load on the arm.</td>
</tr>
<tr>
<td>Phi</td>
<td>Angle of rotation (°) about the corresponding axis. This value can be entered in the controller via the KCP and is displayed on the KCP.</td>
</tr>
<tr>
<td>POV</td>
<td>Program override (%) = velocity of the robot motion. This value can be entered in the controller via the KCP and is displayed on the KCP.</td>
</tr>
<tr>
<td>Extension</td>
<td>Distance (l in %) (\gg) Fig. 4-12) between axis 1 and the intersection of axes 4 and 5. With parallelogram robots, the distance between axis 1 and the intersection of axis 6 and the mounting flange.</td>
</tr>
<tr>
<td>KCP</td>
<td>The KCP teach pendant has all the operator control and display functions required for operating and programming the robot system.</td>
</tr>
</tbody>
</table>
4.9.3 Stopping distances and times, KR 1000 1300 titan PA

4.9.3.1 Stopping distances and stopping times for STOP 0, axis 1 to axis 3

The table shows the stopping distances and stopping times after a STOP 0 (category 0 stop) is triggered. The values refer to the following configuration:

- Extension \(l = 100\% \)
- Program override POV = 100%
- Mass \(m \) = maximum load (rated load + supplementary load on arm)

<table>
<thead>
<tr>
<th>Axis</th>
<th>Stopping distance (°)</th>
<th>Stopping time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Axis 1</td>
<td>38.17</td>
<td>1.096</td>
</tr>
<tr>
<td>Axis 2</td>
<td>16.70</td>
<td>0.535</td>
</tr>
<tr>
<td>Axis 3</td>
<td>14.01</td>
<td>0.359</td>
</tr>
</tbody>
</table>
4.9.3.2 Stopping distances and stopping times for STOP 1, axis 1

Fig. 4-13: Stopping distances for STOP 1, axis 1
Fig. 4-14: Stopping times for STOP 1, axis 1
4.9.3.3 Stopping distances and stopping times for STOP 1, axis 2

Fig. 4-15: Stopping distances for STOP 1, axis 2
Fig. 4-16: Stopping times for STOP 1, axis 2
4.9.3.4 Stopping distances and stopping times for STOP 1, axis 3

The table shows the stopping distances and stopping times after a STOP 0 (category 0 stop) is triggered. The values refer to the following configuration:

- Extension l = 100%
- Program override POV = 100%
- Mass m = maximum load (rated load + supplementary load on arm)

<table>
<thead>
<tr>
<th>Axis</th>
<th>Stopping distance (°)</th>
<th>Stopping time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Axis 1</td>
<td>39.58</td>
<td>1.119</td>
</tr>
<tr>
<td>Axis 2</td>
<td>17.67</td>
<td>0.556</td>
</tr>
<tr>
<td>Axis 3</td>
<td>14.71</td>
<td>0.386</td>
</tr>
</tbody>
</table>

Fig. 4-17: Stopping distances for STOP 1, axis 3

Fig. 4-18: Stopping times for STOP 1, axis 3

4.9.4 Stopping distances and times, KR 1000 L950 titan PA

4.9.4.1 Stopping distances and stopping times for STOP 0, axis 1 to axis 3

The table shows the stopping distances and stopping times after a STOP 0 (category 0 stop) is triggered. The values refer to the following configuration:

- Extension l = 100%
- Program override POV = 100%
- Mass m = maximum load (rated load + supplementary load on arm)
4.9.4.2 Stopping distances and stopping times for STOP 1, axis 1

Fig. 4-19: Stopping distances for STOP 1, axis 1
Fig. 4-20: Stopping times for STOP 1, axis 1
4.9.4.3 Stopping distances and stopping times for STOP 1, axis 2

Fig. 4-21: Stopping distances for STOP 1, axis 2
Fig. 4-22: Stopping times for STOP 1, axis 2
4.9.4.4 Stopping distances and stopping times for STOP 1, axis 3

Fig. 4-23: Stopping distances for STOP 1, axis 3

Fig. 4-24: Stopping times for STOP 1, axis 3
5 Safety

5.1 General

This “Safety” chapter refers to a mechanical component of an industrial robot.

If the mechanical component is used together with a KUKA robot controller, the “Safety” chapter of the operating instructions or assembly instructions of the robot controller must be used!

This contains all the information provided in this “Safety” chapter. It also contains additional safety information relating to the robot controller which must be observed.

Where this “Safety” chapter uses the term “industrial robot”, this also refers to the individual mechanical component if applicable.

Safety information

Safety information cannot be held against KUKA Roboter GmbH. Even if all safety instructions are followed, this is not a guarantee that the industrial robot will not cause personal injuries or material damage.

No modifications may be carried out to the industrial robot without the authorization of KUKA Roboter GmbH. Additional components (tools, software, etc.), not supplied by KUKA Roboter GmbH, may be integrated into the industrial robot. The user is liable for any damage these components may cause to the industrial robot or to other material property.

In addition to the Safety chapter, this document contains further safety instructions. These must also be observed.
5.1.2 Intended use of the industrial robot

The industrial robot is intended exclusively for the use designated in the “Purpose” chapter of the operating instructions or assembly instructions.

Any use or application deviating from the intended use is deemed to be misuse and is not allowed. The manufacturer is not liable for any damage resulting from such misuse. The risk lies entirely with the user.

Operation of the industrial robot in accordance with its intended use also requires compliance with the operating and assembly instructions for the individual components, with particular reference to the maintenance specifications.

Misuse

Any use or application deviating from the intended use is deemed to be misuse and is not allowed. This includes e.g.:

- Transportation of persons and animals
- Use as a climbing aid
- Operation outside the specified operating parameters
- Use in potentially explosive environments
- Operation without additional safeguards
- Outdoor operation
- Underground operation

5.1.3 EC declaration of conformity and declaration of incorporation

The industrial robot constitutes partly completed machinery as defined by the EC Machinery Directive. The industrial robot may only be put into operation if the following preconditions are met:

- The industrial robot is integrated into a complete system.
 or: The industrial robot, together with other machinery, constitutes a complete system.
 or: All safety functions and safeguards required for operation in the complete machine as defined by the EC Machinery Directive have been added to the industrial robot.
- The complete system complies with the EC Machinery Directive. This has been confirmed by means of an assessment of conformity.

Declaration of conformity

The system integrator must issue a declaration of conformity for the complete system in accordance with the Machinery Directive. The declaration of conformity forms the basis for the CE mark for the system. The industrial robot must always be operated in accordance with the applicable national laws, regulations and standards.

The robot controller is CE certified under the EMC Directive and the Low Voltage Directive.

Declaration of incorporation

The partly completed machinery is supplied with a declaration of incorporation in accordance with Annex II B of the EC Machinery Directive 2006/42/EC. The assembly instructions and a list of essential requirements complied with in accordance with Annex I are integral parts of this declaration of incorporation.

The declaration of incorporation declares that the start-up of the partly completed machinery is not allowed until the partly completed machinery has been incorporated into machinery, or has been assembled with other parts to form machinery, and this machinery complies with the terms of the EC Machinery Directive, and the EC declaration of conformity is present in accordance with Annex II A.
5.1.4 Terms used

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Axis range</td>
<td>Range of each axis, in degrees or millimeters, within which it may move. The axis range must be defined for each axis.</td>
</tr>
<tr>
<td>Stopping distance</td>
<td>Stopping distance = reaction distance + braking distance The stopping distance is part of the danger zone.</td>
</tr>
<tr>
<td>Workspace</td>
<td>The manipulator is allowed to move within its workspace. The workspace is derived from the individual axis ranges.</td>
</tr>
<tr>
<td>Operator</td>
<td>The user of the industrial robot can be the management, employer or delegated person responsible for use of the industrial robot.</td>
</tr>
<tr>
<td>Danger zone</td>
<td>The danger zone consists of the workspace and the stopping distances.</td>
</tr>
<tr>
<td>Service life</td>
<td>The service life of a safety-relevant component begins at the time of delivery of the component to the customer. The service life is not affected by whether the component is used in a robot controller or elsewhere or not, as safety-relevant components are also subject to aging during storage.</td>
</tr>
<tr>
<td>KCP</td>
<td>KUKA Control Panel Teach pendant for the KR C2/KR C2 edition2005 The KCP has all the operator control and display functions required for operating and programming the industrial robot.</td>
</tr>
<tr>
<td>KUKA smartPAD</td>
<td>see “smartPAD”</td>
</tr>
<tr>
<td>Manipulator</td>
<td>The robot arm and the associated electrical installations</td>
</tr>
<tr>
<td>Safety zone</td>
<td>The safety zone is situated outside the danger zone.</td>
</tr>
<tr>
<td>smartPAD</td>
<td>Teach pendant for the KR C4 The smartPAD has all the operator control and display functions required for operating and programming the industrial robot.</td>
</tr>
<tr>
<td>Stop category 0</td>
<td>The drives are deactivated immediately and the brakes are applied. The manipulator and any external axes (optional) perform path-oriented braking. Note: This stop category is called STOP 0 in this document.</td>
</tr>
<tr>
<td>Stop category 1</td>
<td>The manipulator and any external axes (optional) perform path-maintaining braking. The drives are deactivated after 1 s and the brakes are applied. Note: This stop category is called STOP 1 in this document.</td>
</tr>
<tr>
<td>Stop category 2</td>
<td>The drives are not deactivated and the brakes are not applied. The manipulator and any external axes (optional) are braked with a normal braking ramp. Note: This stop category is called STOP 2 in this document.</td>
</tr>
<tr>
<td>System integrator (plant integrator)</td>
<td>System integrators are people who safely integrate the industrial robot into a complete system and commission it.</td>
</tr>
<tr>
<td>T1</td>
<td>Test mode, Manual Reduced Velocity (<= 250 mm/s)</td>
</tr>
<tr>
<td>T2</td>
<td>Test mode, Manual High Velocity (> 250 mm/s permissible)</td>
</tr>
<tr>
<td>External axis</td>
<td>Motion axis which is not part of the manipulator but which is controlled using the robot controller, e.g. KUKA linear unit, turn-tilt table, Posiflex.</td>
</tr>
</tbody>
</table>

5.2 Personnel

The following persons or groups of persons are defined for the industrial robot:

- User
Personnel

All persons working with the industrial robot must have read and understood the industrial robot documentation, including the safety chapter.

User

The user must observe the labor laws and regulations. This includes e.g.:
- The user must comply with his monitoring obligations.
- The user must carry out briefing at defined intervals.

Personnel

Personnel must be instructed, before any work is commenced, in the type of work involved and what exactly it entails as well as any hazards which may exist. Instruction must be carried out regularly. Instruction is also required after particular incidents or technical modifications.

Personnel includes:
- System integrator
- Operators, subdivided into:
 - Start-up, maintenance and service personnel
 - Operating personnel
 - Cleaning personnel

System integrator

The industrial robot is safely integrated into a complete system by the system integrator.

The system integrator is responsible for the following tasks:
- Installing the industrial robot
- Connecting the industrial robot
- Performing risk assessment
- Implementing the required safety functions and safeguards
- Issuing the declaration of conformity
- Attaching the CE mark
- Creating the operating instructions for the complete system

Operator

The operator must meet the following preconditions:
- The operator must be trained for the work to be carried out.
- Work on the industrial robot must only be carried out by qualified personnel. These are people who, due to their specialist training, knowledge and experience, and their familiarization with the relevant standards, are able to assess the work to be carried out and detect any potential hazards.

Work on the electrical and mechanical equipment of the industrial robot may only be carried out by specially trained personnel.

5.3 Workspace, safety zone and danger zone

Workspaces are to be restricted to the necessary minimum size. A workspace must be safeguarded using appropriate safeguards.
The safeguards (e.g. safety gate) must be situated inside the safety zone. In the case of a stop, the manipulator and external axes (optional) are braked and come to a stop within the danger zone.

The danger zone consists of the workspace and the stopping distances of the manipulator and external axes (optional). It must be safeguarded by means of physical safeguards to prevent danger to persons or the risk of material damage.

5.4 Overview of protective equipment

The protective equipment of the mechanical component may include:

- Mechanical end stops
- Mechanical axis range limitation (optional)
- Axis range monitoring (optional)
- Release device (optional)
- Labeling of danger areas

Not all equipment is relevant for every mechanical component.

5.4.1 Mechanical end stops

Depending on the robot variant, the axis ranges of the main and wrist axes of the manipulator are partially limited by mechanical end stops.

Additional mechanical end stops can be installed on the external axes.

| WARNING | If the manipulator or an external axis hits an obstruction or a mechanical end stop or axis range limitation, the manipulator can no longer be operated safely. The manipulator must be taken out of operation and KUKA Roboter GmbH must be consulted before it is put back into operation. |

5.4.2 Mechanical axis range limitation (optional)

Some manipulators can be fitted with mechanical axis range limitation in axes A1 to A3. The adjustable axis range limitation systems restrict the working range to the required minimum. This increases personal safety and protection of the system.

In the case of manipulators that are not designed to be fitted with mechanical axis range limitation, the workspace must be laid out in such a way that there is no danger to persons or material property, even in the absence of mechanical axis range limitation.

If this is not possible, the workspace must be limited by means of photoelectric barriers, photoelectric curtains or obstacles on the system side. There must be no shearing or crushing hazards at the loading and transfer areas.

| Information | This option is not available for all robot models. Information on specific robot models can be obtained from KUKA Roboter GmbH. |

5.4.3 Axis range monitoring (optional)

Some manipulators can be fitted with dual-channel axis range monitoring systems in main axes A1 to A3. The positioner axes may be fitted with additional axis range monitoring systems. The safety zone for an axis can be adjusted...
and monitored using an axis range monitoring system. This increases personal safety and protection of the system.

5.4.4 Options for moving the manipulator without drive energy

The system user is responsible for ensuring that the training of personnel with regard to the response to emergencies or exceptional situations also includes how the manipulator can be moved without drive energy.

Description

The following options are available for moving the manipulator without drive energy after an accident or malfunction:

- **Release device (optional)**
 The release device can be used for the main axis drive motors and, depending on the robot variant, also for the wrist axis drive motors.

- **Brake release device (option)**
 The brake release device is designed for robot variants whose motors are not freely accessible.

- **Moving the wrist axes directly by hand**
 There is no release device available for the wrist axes of variants in the low payload category. This is not necessary because the wrist axes can be moved directly by hand.

Information

Information about the options available for the various robot models and about how to use them can be found in the assembly and operating instructions for the robot or requested from KUKA Roboter GmbH.

NOTICE

Moving the manipulator without drive energy can damage the motor brakes of the axes concerned. The motor must be replaced if the brake has been damaged. The manipulator may therefore be moved without drive energy only in emergencies, e.g. for rescuing persons.

5.4.5 Labeling on the industrial robot

All plates, labels, symbols and marks constitute safety-relevant parts of the industrial robot. They must not be modified or removed.

Labeling on the industrial robot consists of:

- Identification plates
- Warning signs
- Safety symbols
- Designation labels
- Cable markings
- Rating plates

Further information is contained in the technical data of the operating instructions or assembly instructions of the components of the industrial robot.
5.5 Safety measures

5.5.1 General safety measures

The industrial robot may only be used in perfect technical condition in accordance with its intended use and only by safety-conscious persons. Operator errors can result in personal injury and damage to property.

It is important to be prepared for possible movements of the industrial robot even after the robot controller has been switched off and locked out. Incorrect installation (e.g. overload) or mechanical defects (e.g. brake defect) can cause the manipulator or external axes to sag. If work is to be carried out on a switched-off industrial robot, the manipulator and external axes must first be moved into a position in which they are unable to move on their own, whether the payload is mounted or not. If this is not possible, the manipulator and external axes must be secured by appropriate means.

In the absence of operational safety functions and safeguards, the industrial robot can cause personal injury or material damage. If safety functions or safeguards are dismantled or deactivated, the industrial robot may not be operated.

Standing underneath the robot arm can cause death or injuries. For this reason, standing underneath the robot arm is prohibited!

The motors reach temperatures during operation which can cause burns to the skin. Contact must be avoided. Appropriate safety precautions must be taken, e.g. protective gloves must be worn.

The user must ensure that the industrial robot is only operated with the KCP/smartPAD by authorized persons.

If more than one KCP/smartPAD is used in the overall system, it must be ensured that each device is unambiguously assigned to the corresponding industrial robot. They must not be interchanged.

The operator must ensure that decoupled KCPs/smartPADs are immediately removed from the system and stored out of sight and reach of personnel working on the industrial robot. This serves to prevent operational and non-operational EMERGENCY STOP devices from becoming interchanged. Failure to observe this precaution may result in death, severe injuries or considerable damage to property.

An external keyboard and/or external mouse may only be used if the following conditions are met:

- Start-up or maintenance work is being carried out.
- The drives are switched off.
- There are no persons in the danger zone.

The KCP/smartPAD must not be used as long as an external keyboard and/or external mouse are connected to the control cabinet.

The external keyboard and/or external mouse must be removed from the control cabinet as soon as the start-up or maintenance work is completed or the KCP/smartPAD is connected.
Modifications

After modifications to the industrial robot, checks must be carried out to ensure the required safety level. The valid national or regional work safety regulations must be observed for this check. The correct functioning of all safety functions must also be tested.

New or modified programs must always be tested first in Manual Reduced Velocity mode (T1).

After modifications to the industrial robot, existing programs must always be tested first in Manual Reduced Velocity mode (T1). This applies to all components of the industrial robot and includes modifications to the software and configuration settings.

Faults

The following tasks must be carried out in the case of faults in the industrial robot:

- Switch off the robot controller and secure it (e.g. with a padlock) to prevent unauthorized persons from switching it on again.
- Indicate the fault by means of a label with a corresponding warning (tag-out).
- Keep a record of the faults.
- Eliminate the fault and carry out a function test.

5.5.2 Transportation

Manipulator

The prescribed transport position of the manipulator must be observed. Transportation must be carried out in accordance with the operating instructions or assembly instructions of the robot.

Avoid vibrations and impacts during transportation in order to prevent damage to the manipulator.

Robot controller

The prescribed transport position of the robot controller must be observed. Transportation must be carried out in accordance with the operating instructions or assembly instructions of the robot controller.

Avoid vibrations and impacts during transportation in order to prevent damage to the robot controller.

External axis (optional)

The prescribed transport position of the external axis (e.g. KUKA linear unit, turn-tilt table, positioner) must be observed. Transportation must be carried out in accordance with the operating instructions or assembly instructions of the external axis.

5.5.3 Start-up and recommissioning

Before starting up systems and devices for the first time, a check must be carried out to ensure that the systems and devices are complete and operational, that they can be operated safely and that any damage is detected.

The valid national or regional work safety regulations must be observed for this check. The correct functioning of all safety circuits must also be tested.

The passwords for logging onto the KUKA System Software as “Expert” and “Administrator” must be changed before start-up and must only be communicated to authorized personnel.
The following tests must be carried out before start-up and recommissioning:

- The industrial robot is correctly installed and fastened in accordance with the specifications in the documentation.
- There is no damage to the robot that could be attributed to external forces. Example: Dents or abrasion that could be caused by an impact or collision.
- There are no foreign bodies or loose parts on the industrial robot.
- All required safety equipment is correctly installed and operational.
- The power supply ratings of the industrial robot correspond to the local supply voltage and mains type.
- The ground conductor and the equipotential bonding cable are sufficiently rated and correctly connected.
- The connecting cables are correctly connected and the connectors are locked.

If additional components (e.g. cables), which are not part of the scope of supply of KUKA Roboter GmbH, are integrated into the industrial robot, the user is responsible for ensuring that these components do not adversely affect or disable safety functions.

If the internal cabinet temperature of the robot controller differs greatly from the ambient temperature, condensation can form, which may cause damage to the electrical components. Do not put the robot controller into operation until the internal temperature of the cabinet has adjusted to the ambient temperature.

Function test

The following tests must be carried out before start-up and recommissioning:

It must be ensured that:

- The industrial robot is correctly installed and fastened in accordance with the specifications in the documentation.
- There is no damage to the robot that could be attributed to external forces. Example: Dents or abrasion that could be caused by an impact or collision.
- There are no foreign bodies or loose parts on the industrial robot.
- All required safety equipment is correctly installed and operational.
- The power supply ratings of the industrial robot correspond to the local supply voltage and mains type.
- The ground conductor and the equipotential bonding cable are sufficiently rated and correctly connected.
- The connecting cables are correctly connected and the connectors are locked.

Machine data

It must be ensured that the rating plate on the robot controller has the same machine data as those entered in the declaration of incorporation. The machine data on the rating plate of the manipulator and the external axes (optional) must be entered during start-up.

The industrial robot must not be moved if incorrect machine data are loaded. Death, severe injuries or considerable damage to property may otherwise result. The correct machine data must be loaded.
5.5.4 Manual mode

Manual mode is the mode for setup work. Setup work is all the tasks that have to be carried out on the industrial robot to enable automatic operation. Setup work includes:

- Jog mode
- Teaching
- Programming
- Program verification

The following must be taken into consideration in manual mode:

- If the drives are not required, they must be switched off to prevent the manipulator or the external axes (optional) from being moved unintentionally.
- New or modified programs must always be tested first in Manual Reduced Velocity mode (T1).
- The manipulator, tooling or external axes (optional) must never touch or project beyond the safety fence.
- Workpieces, tooling and other objects must not become jammed as a result of the industrial robot motion, nor must they lead to short-circuits or be liable to fall off.
- All setup work must be carried out, where possible, from outside the safeguarded area.

If the setup work has to be carried out inside the safeguarded area, the following must be taken into consideration:

In **Manual Reduced Velocity mode (T1)**:

- If it can be avoided, there must be no other persons inside the safeguarded area.

 If it is necessary for there to be several persons inside the safeguarded area, the following must be observed:

 - Each person must have an enabling device.
 - All persons must have an unimpeded view of the industrial robot.
 - Eye-contact between all persons must be possible at all times.
 - The operator must be so positioned that he can see into the danger area and get out of harm's way.

In **Manual High Velocity mode (T2)**:

- This mode may only be used if the application requires a test at a velocity higher than possible in T1 mode.
- Teaching and programming are not permissible in this operating mode.
- Before commencing the test, the operator must ensure that the enabling devices are operational.
- The operator must be positioned outside the danger zone.
- There must be no other persons inside the safeguarded area. It is the responsibility of the operator to ensure this.

5.5.5 Automatic mode

Automatic mode is only permissible in compliance with the following safety measures:

- All safety equipment and safeguards are present and operational.
- There are no persons in the system.
- The defined working procedures are adhered to.
If the manipulator or an external axis (optional) comes to a standstill for no apparent reason, the danger zone must not be entered until an EMERGENCY STOP has been triggered.

5.5.6 Maintenance and repair

After maintenance and repair work, checks must be carried out to ensure the required safety level. The valid national or regional work safety regulations must be observed for this check. The correct functioning of all safety functions must also be tested.

The purpose of maintenance and repair work is to ensure that the system is kept operational or, in the event of a fault, to return the system to an operational state. Repair work includes troubleshooting in addition to the actual repair itself.

The following safety measures must be carried out when working on the industrial robot:

- Carry out work outside the danger zone. If work inside the danger zone is necessary, the user must define additional safety measures to ensure the safe protection of personnel.
- Switch off the industrial robot and secure it (e.g. with a padlock) to prevent it from being switched on again. If it is necessary to carry out work with the robot controller switched on, the user must define additional safety measures to ensure the safe protection of personnel.
- If it is necessary to carry out work with the robot controller switched on, this may only be done in operating mode T1.
- Label the system with a sign indicating that work is in progress. This sign must remain in place, even during temporary interruptions to the work.
- The EMERGENCY STOP devices must remain active. If safety functions or safeguards are deactivated during maintenance or repair work, they must be reactivated immediately after the work is completed.

Faulty components must be replaced using new components with the same article numbers or equivalent components approved by KUKA Roboter GmbH for this purpose.

Cleaning and preventive maintenance work is to be carried out in accordance with the operating instructions.

Robot controller

Even when the robot controller is switched off, parts connected to peripheral devices may still carry voltage. The external power sources must therefore be switched off if work is to be carried out on the robot controller.

The ESD regulations must be adhered to when working on components in the robot controller.

Voltages in excess of 50 V (up to 600 V) can be present in various components for several minutes after the robot controller has been switched off! To prevent life-threatening injuries, no work may be carried out on the industrial robot in this time.

Water and dust must be prevented from entering the robot controller.
Counterbalancing system

Some robot variants are equipped with a hydropneumatic, spring or gas cylinder counterbalancing system.

The hydropneumatic and gas cylinder counterbalancing systems are pressure equipment and, as such, are subject to obligatory equipment monitoring and the provisions of the Pressure Equipment Directive.

The user must comply with the applicable national laws, regulations and standards pertaining to pressure equipment.

Inspection intervals in Germany in accordance with Industrial Safety Order, Sections 14 and 15. Inspection by the user before commissioning at the installation site.

The following safety measures must be carried out when working on the counterbalancing system:

- The manipulator assemblies supported by the counterbalancing systems must be secured.
- Work on the counterbalancing systems must only be carried out by qualified personnel.

Hazardous substances

The following safety measures must be carried out when handling hazardous substances:

- Avoid prolonged and repeated intensive contact with the skin.
- Avoid breathing in oil spray or vapors.
- Clean skin and apply skin cream.

To ensure safe use of our products, we recommend that our customers regularly request up-to-date safety data sheets from the manufacturers of hazardous substances.

5.5.7 Decommissioning, storage and disposal

The industrial robot must be decommissioned, stored and disposed of in accordance with the applicable national laws, regulations and standards.

5.6 Applied norms and regulations

<table>
<thead>
<tr>
<th>Name</th>
<th>Definition</th>
<th>Edition</th>
</tr>
</thead>
</table>
(Only applicable for robots with hydropneumatic counterbalancing system.)
This directive is valid from the 19/07/2016 on.

Pressure Equipment Directive: 97/23/EC
(Only applicable for robots with hydropneumatic counterbalancing system.)
This directive is valid until 18/07/2016.

Safety of machinery:
EN ISO 13850: 2008
Emergency stop - Principles for design

Safety of machinery:
EN ISO 13849-1: 2008
Safety-related parts of control systems - Part 1: General principles of design

Safety of machinery:
EN ISO 13849-2: 2012
Safety-related parts of control systems - Part 2: Validation

Safety of machinery:
EN ISO 12100: 2010
General principles of design, risk assessment and risk reduction

Industrial robots – Safety requirements:
EN ISO 10218-1: 2011
Part 1: Robot
Note: Content equivalent to ANSI/RIA R.15.06-2012, Part 1

Safety of machinery:
EN 614-1 + A1: 2009
Ergonomic design principles - Part 1: Terms and general principles

Electromagnetic compatibility (EMC):
EN 61000-6-2: 2005
Part 6-2: Generic standards; Immunity for industrial environments

Electromagnetic compatibility (EMC):
EN 61000-6-4 + A1: 2011
Part 6-4: Generic standards; Emission standard for industrial environments

Safety of machinery:
EN 60204-1 + A1: 2009
Electrical equipment of machines - Part 1: General requirements
6 Planning

6.1 Information for planning

In the planning and design phase, care must be taken regarding the functions or applications to be executed by the kinematic system. The following conditions can lead to premature wear. They necessitate shorter maintenance intervals and/or earlier exchange of components. In addition, the permissible operating parameters specified in the technical data must be taken into account and observed during planning.

- Continuous operation near temperature limits or in abrasive environments
- Continuous operation close to the performance limits, e.g. high rpm of an axis
- High duty cycle of individual axes
- Monotonous motion profiles, e.g. short, frequently recurring axis motions
- Static axis positions, e.g. continuous vertical position of a wrist axis
- External forces (process forces) acting on the robot

If one or more of these conditions are to apply during operation of the kinematic system, KUKA Roboter GmbH must be consulted.

If the robot reaches its corresponding operation limit or if it is operated near the limit for a period of time, the built-in monitoring functions come into effect and the robot is automatically switched off.

This protective function can limit the availability of the robot system.

6.2 Mounting base with centering

Description

The mounting base with centering is used when the robot is fastened to the floor.

The mounting base with centering consists of:

- Bedplate
- Chemical anchors (resin-bonded anchors)
- Fasteners

This mounting variant requires a level and smooth surface on a concrete foundation with adequate load bearing capacity. The concrete foundation must be able to accommodate the forces occurring during operation. There must be no layers of insulation or screed between the bedplate and the concrete foundation.

The minimum dimensions must be observed.
When producing foundations from concrete, observe the load-bearing capacity of the ground and the country-specific construction regulations. There must be no layers of insulation or screed between the bedplates and the concrete foundation. The quality of the concrete must meet the requirements of the following standard:

The following illustration (Fig. 6-2) provides all the necessary information on the mounting base, together with the required foundation data.
Planning

To ensure that the anchor forces are safely transmitted to the foundation, observe the dimensions for concrete foundations specified in the following illustration (Fig. 6-3).

Fig. 6-2: Mounting base with centering, dimensioned drawing

To ensure that the anchor forces are safely transmitted to the foundation, observe the dimensions for concrete foundations specified in the following illustration (Fig. 6-3).

Fig. 6-3: Cross-section of foundations

1. Bedplate
2. Chemical anchor (resin-bonded anchor)
3. Concrete foundation
6.3 Machine frame mounting

Description

The machine frame mounting assembly is used when the robot is fastened on a steel structure, a booster frame (pedestal) or a KUKA linear unit. It must be ensured that the substructure is able to withstand safely the forces occurring during operation (foundation loads). The following diagram contains all the necessary information that must be observed when preparing the mounting surface.

The machine frame mounting assembly consists of:

- Pin with fasteners (Fig. 6-4)
- Sword pin with fasteners
- Hexagon bolts with conical spring washers

![Machine frame mounting](image)

Fig. 6-4: Machine frame mounting

1. Hexagon bolts, 12x
2. Sword pin
3. Pin

Dimensioned drawing

The following illustration (Fig. 6-2) provides all the necessary information on the mounting base, together with the required foundation data.
6.4 Connecting cables and interfaces

Description

The connecting cables comprise all the cables for transferring energy and signals between the robot and the robot controller. Depending on the specification of the robot, the following connecting cables are used:

- Standard connecting cables
- Connecting cables for RoboTeam robots
- Connecting cables for SafeRobot

Depending on the specification of the robot, various connecting cables are used. Cable lengths of 7 m, 15 m, 25 m, 35 m and 50 m are available. The maximum length of the connecting cables must not exceed 50 m. Thus if the robot is operated on a linear unit which has its own energy supply chain these cables must also be taken into account.

If the length of the connecting cables is greater than 25 m, a 16 mm² ground conductor must be connected between the robot and the control cabinet. An additional ground conductor is always required to provide a low-resistance connection between the robot and the control cabinet in accordance with DIN EN 60204-1. The ground conductors are connected via ring cable lugs. The threaded bolt for connecting the ground conductor is located on the base frame of the robot.

If the robot is equipped with remote junction boxes, the permissible lengths of the connecting cables are limited to 35 m. The cables of the remote RDC box (cable set) must be routed in the same way as the connecting cables.
The following points must be observed when planning and routing the connecting cables:

- The bending radius for fixed routing must not be less than 150 mm for motor cables and 60 mm for control cables.
- Protect cables against exposure to mechanical stress.
- Route the cables without mechanical stress – no tensile forces on the connectors.
- Cables are only to be installed indoors.
- Observe permissible temperature range (fixed installation) of 263 K (-10 °C) to 343 K (+70 °C).
- Route the motor cables and the data cables separately in metal ducts; if necessary, additional measures must be taken to ensure electromagnetic compatibility (EMC).

The robot can be equipped with an energy supply system between axis 1 and axis 3 and a second energy supply system between axis 3 and axis 6. The A1 interface required for this is located on the rear, the A3 interface is located on the side of the arm and the interface for axis 6 is located on the robot tool. The interfaces are equipped with connections for cables and hoses depending on the application. Detailed information on the connector pin allocation, threaded unions, etc. is given in separate documentation.
7 Transportation

7.1 Transporting the robot

Before transporting the robot, always move the robot into its transport position (Fig. 7-1). It must be ensured that the robot is stable while it is being transported. The robot must remain in its transport position until it has been fastened in position. Before the robot is lifted, it must be ensured that it is free from obstructions. Remove all transport safeguards, such as nails and screws, in advance. First remove any rust or glue on contact surfaces.

If the robot is sent via airfreight, the counterbalancing system must be fully depressurized (both oil and nitrogen).

A hydropneumatic counterbalancing system is classified as hazardous. For this reason, the applicable national regulations must be observed when shipping. If the robot with built-in counterbalancing system is, for example, shipped via airfreight, country regulations may require that the counterbalancing system be fully depressurized.

The robot must be in the transport position (Fig. 7-1) before it can be transported. The robot is in the transport position when the axes are in the following positions:

<table>
<thead>
<tr>
<th>Axis</th>
<th>A1</th>
<th>A2</th>
<th>A3</th>
<th>A4</th>
<th>A5</th>
<th>A6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angle 1)</td>
<td>0°</td>
<td>-130°</td>
<td>+130°</td>
<td>0°</td>
<td>+90°</td>
<td>0°</td>
</tr>
<tr>
<td>Angle 2)</td>
<td>0°</td>
<td>-140°</td>
<td>+140°</td>
<td>0°</td>
<td>+90°</td>
<td>0°</td>
</tr>
</tbody>
</table>

1) Robot with buffer installed on axis 2
2) Robot without buffer on 2

The transport dimensions (Fig. 7-2) and (Fig. 7-3) for the robot can be noted from the following diagrams. The position of the center of gravity and the weight vary according to the specific configuration and the position of axis 2. The specified dimensions refer to the robot without equipment.

The dimensions with the index 1) apply for normal transportation. The dimensions with the index 2) are obtained if the buffer on the minus side of axis 2 is removed.
Transportation

The robot can be transported by fork lift truck or using lifting tackle.
Transportation by fork lift truck

For transport by fork lift truck (Fig. 7-4), cast fork slots are provided in the base frame. The fork lift truck must have a minimum payload capacity of 6 t.

WARNING

Use of unsuitable handling equipment may result in damage to the robot or injury to persons. Only use authorized handling equipment with a sufficient load-bearing capacity. Only transport the robot in the manner specified here.

NOTICE

Avoid excessive loading of the fork slots through undue inward or outward movement of hydraulically adjustable forks of the fork lift truck. Failure to do so may result in material damage.

Fig. 7-4: Transportation by fork lift truck

The robot may tip during transportation. Risk of personal injury and damage to property.

Avoid excessive loading of the fork slots through undue inward or outward movement of hydraulically adjustable forks of the fork lift truck. Failure to do so may result in material damage.

Transportation using lifting tackle

The robot can also be transported using lifting tackle (Fig. 7-5) (1). The robot must be in the transport position. The lifting tackle is attached to 3 eyebolts (2) that are permanently screwed into the rotating column (3). All ropes must be long enough and must be routed in such a way that the robot is not damaged. Installed tools and items of equipment can cause undesirable shifts in the center of gravity.

WARNING

The robot may tip during transportation. Risk of personal injury and damage to property.

Avoid excessive loading of the fork slots through undue inward or outward movement of hydraulically adjustable forks of the fork lift truck. Failure to do so may result in material damage.

If the robot is being transported using lifting tackle, special care must be exercised to prevent it from tipping. Additional safeguarding measures must be taken. It is forbidden to pick up the robot in any other way using a crane!
If the permitted height for transportation is exceeded in the transport position, the robot can be moved into a different position. To do this, the robot must be secured to the transport frame with all holding-down bolts. Once this has been done, axes 2 and 3 can be moved so as to reduce the overall height (Fig. 7-6) and (Fig. 7-7). The robot can be transported on the transport frame by crane or fork lift truck (minimum payload capacity 8,000 kg). Both robot variants, with transport frame and without equipment, have an overall weight of approx. 5,600 kg.

Before the robot can be transported on the transport frame, the robot axes must be in the following positions:

<table>
<thead>
<tr>
<th>Axis</th>
<th>A 1</th>
<th>A 2</th>
<th>A 3</th>
<th>A 4</th>
<th>A 5</th>
<th>A 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angle</td>
<td>0°</td>
<td>-16°</td>
<td>+145°</td>
<td>0°</td>
<td>0°</td>
<td>-90°</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>+25° *</td>
<td></td>
<td>+120° *</td>
<td></td>
</tr>
</tbody>
</table>

* Angle for in-line wrist IW 750
Fig. 7-6: Transport frame for in-line wrist IW 1000
Fig. 7-7: Transport frame for in-line wrist IW 750
8 KUKA Service

8.1 Requesting support

Introduction
This documentation provides information on operation and operator control, and provides assistance with troubleshooting. For further assistance, please contact your local KUKA subsidiary.

Information
The following information is required for processing a support request:

- Description of the problem, including information about the duration and frequency of the fault
- As comprehensive information as possible about the hardware and software components of the overall system

The following list gives an indication of the information which is relevant in many cases:

- Model and serial number of the kinematic system, e.g. the manipulator
- Model and serial number of the controller
- Model and serial number of the energy supply system
- Designation and version of the system software
- Designations and versions of other software components or modifications
- Diagnostic package KRCDiag
 Additionally for KUKA Sunrise: Existing projects including applications
 For versions of KUKA System Software older than V8: Archive of the software (KRCDiag is not yet available here.)
- Application used
- External axes used

8.2 KUKA Customer Support

Availability
KUKA Customer Support is available in many countries. Please do not hesitate to contact us if you have any questions.

Argentina
Ruben Costantini S.A. (Agency)
Luis Angel Huergo 13 20
Parque Industrial
2400 San Francisco (CBA)
Argentina
Tel. +54 3564 421033
Fax +54 3564 428877
ventas@costantini-sa.com

Australia
KUKA Robotics Australia Pty Ltd
45 Fennell Street
Port Melbourne VIC 3207
Australia
Tel. +61 3 9939 9656
info@kuka-robotics.com.au
www.kuka-robotics.com.au
Belgium
KUKA Automatisering + Robots N.V.
Centrum Zuid 1031
3530 Houthalen
Belgium
Tel. +32 11 516160
Fax +32 11 526794
info@kuka.be
www.kuka.be

Brazil
KUKA Roboter do Brasil Ltda.
Travessa Claudio Armando, nº 171
Bloco 5 - Galpões 51/52
Bairro Assunção
CEP 09861-7630 São Bernardo do Campo - SP
Brazil
Tel. +55 11 4942-8299
Fax +55 11 2201-7883
info@kuka-roboter.com.br
www.kuka-roboter.com.br

Chile
Robotec S.A. (Agency)
Santiago de Chile
Chile
Tel. +56 2 331-5951
Fax +56 2 331-5952
robotec@robotec.cl
www.robotec.cl

China
KUKA Robotics China Co., Ltd.
No. 889 Kungang Road
Xiaokunshan Town
Songjiang District
201614 Shanghai
P. R. China
Tel. +86 21 5707 2688
Fax +86 21 5707 2603
info@kuka-robotics.cn
www.kuka-robotics.com

Germany
KUKA Roboter GmbH
Zugspitzstr. 140
86165 Augsburg
Germany
Tel. +49 821 797-4000
Fax +49 821 797-1616
info@kuka-roboter.de
www.kuka-roboter.de
France
KUKA Automatisme + Robotique SAS
Techvallée
6, Avenue du Parc
91140 Villebon S/Yvette
France
Tel. +33 1 6931660-0
Fax +33 1 6931660-1
commercial@kuka.fr
www.kuka.fr

India
KUKA Robotics India Pvt. Ltd.
Office Number-7, German Centre,
Level 12, Building No. - 9B
DLF Cyber City Phase III
122 002 Gurgaon
Haryana
India
Tel. +91 124 4635774
Fax +91 124 4635773
info@kuka.in
www.kuka.in

Italy
KUKA Roboter Italia S.p.A.
Via Pavia 9/a - int.6
10098 Rivoli (TO)
Italy
Tel. +39 011 959-5013
Fax +39 011 959-5141
kuka@kuka.it
www.kuka.it

Japan
KUKA Robotics Japan K.K.
YBP Technical Center
134 Godo-cho, Hodogaya-ku
Yokohama, Kanagawa
240 0005
Japan
Tel. +81 45 744 7691
Fax +81 45 744 7696
info@kuka.co.jp

Canada
KUKA Robotics Canada Ltd.
6710 Maritz Drive - Unit 4
Mississauga
L5W 0A1
Ontario
Canada
Tel. +1 905 670-8600
Fax +1 905 670-8604
info@kukarobotics.com
www.kuka-robotics.com/canada
Korea
KUKA Robotics Korea Co. Ltd.
RIT Center 306, Gyeonggi Technopark
1271-11 Sa 3-dong, Sangnok-gu
Ansan City, Gyeonggi Do
426-901
Korea
Tel. +82 31 501-1451
Fax +82 31 501-1461
info@kukakorea.com

Malaysia
KUKA Robot Automation (M) Sdn Bhd
South East Asia Regional Office
No. 7, Jalan TPP 6/6
Taman Perindustrian Puchong
47100 Puchong
Selangor
Malaysia
Tel. +60 (03) 8063-1792
Fax +60 (03) 8060-7386
info@kuka.com.my

Mexico
KUKA de México S. de R.L. de C.V.
Progreso #8
Col. Centro Industrial Puente de Viges
Tlalnepantla de Baz
54020 Estado de México
Mexico
Tel. +52 55 5203-8407
Fax +52 55 5203-8148
info@kuka.com.mx
www.kuka-robotics.com/mexico

Norway
KUKA Sveisætanlegg + Roboter
Sentrumsvegen 5
2867 Hov
Norway
Tel. +47 61 18 91 30
Fax +47 61 18 62 00
info@kuka.no

Austria
KUKA Roboter CEE GmbH
Gruberstraße 2-4
4020 Linz
Austria
Tel. +43 7 32 78 47 52
Fax +43 7 32 79 38 80
office@kuka-roboter.at
www.kuka.at
Poland

KUKA Roboter Austria GmbH
Spółka z ograniczoną odpowiedzialnością
Oddział w Polsce
Ul. Porcelanowa 10
40-246 Katowice
Poland
Tel. +48 327 30 32 13 or -14
Fax +48 327 30 32 26
ServicePL@kuka-roboter.de

Portugal

KUKA Robots IBÉRICA, S.A.
Rua do Alto da Guerra n° 50
Armazém 04
2910 011 Setúbal
Portugal
Tel. +351 265 729 780
Fax +351 265 729 782
info.portugal@kukapt.com
www.kuka.com

Russia

KUKA Robotics RUS
Werbnaja ul. 8A
107143 Moskau
Russia
Tel. +7 495 781-31-20
Fax +7 495 781-31-19
info@kuka-robotics.ru
www.kuka-robotics.ru

Sweden

KUKA Svetsanläggningar + Robotar AB
A. Odhners gata 15
421 30 Västra Frölunda
Sweden
Tel. +46 31 7266-200
Fax +46 31 7266-201
info@kuka.se

Switzerland

KUKA Roboter Schweiz AG
Industriestr. 9
5432 Neuenhof
Switzerland
Tel. +41 44 74490-90
Fax +41 44 74490-91
info@kuka-roboter.ch
www.kuka-roboter.ch
Spain KUKA Robots IBÉRICA, S.A.
Pol. Industrial
Torrent de la Pastera
Carrer del Bages s/n
08800 Vilanova i la Geltrú (Barcelona)
Spain
Tel. +34 93 8142-353
Fax +34 93 8142-950
comercial@kukarob.es
www.kuka.es

South Africa Jendamark Automation LTD (Agency)
76a York Road
North End
6000 Port Elizabeth
South Africa
Tel. +27 41 391 4700
Fax +27 41 373 3869
www.jendamark.co.za

Taiwan KUKA Robot Automation Taiwan Co., Ltd.
No. 249 Pujong Road
Jungli City, Taoyuan County 320
Taiwan, R. O. C.
Tel. +886 3 4331988
Fax +886 3 4331948
info@kuka.com.tw
www.kuka.com.tw

Thailand KUKA Robot Automation (M)SdnBhd
Thailand Office
c/o Maccall System Co. Ltd.
49/9-10 Soi Kingkaew 30 Kingkaew Road
Tt. Rachatheva, A. Bangpli
Samutprakarn
10540 Thailand
Tel. +66 2 7502737
Fax +66 2 6612355
atika@ji-net.com
www.kuka-roboter.de

Czech Republic KUKA Roboter Austria GmbH
Organisation Tschechien und Slowakei
Sezemická 2757/2
193 00 Praha
Horní Počernice
Czech Republic
Tel. +420 22 62 12 27 2
Fax +420 22 62 12 27 0
support@kuka.cz
<table>
<thead>
<tr>
<th>Country</th>
<th>Address</th>
<th>Phone</th>
<th>Fax</th>
<th>Email</th>
<th>Website</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hungary</td>
<td>KUKA Robotics Hungaria Kft. Fő út 140 2335 Taksony Hungary</td>
<td>Tel. +36 24 501609 Fax +36 24 477031</td>
<td>info@kuka-robotics.hu</td>
<td></td>
<td></td>
</tr>
<tr>
<td>USA</td>
<td>KUKA Robotics Corporation 51870 Shelby Parkway Shelby Township 48315-1787 Michigan USA</td>
<td>Tel. +1 866 873-5852 Fax +1 866 329-5852</td>
<td>info@kukarobotics.com www.kukarobotics.com</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UK</td>
<td>KUKA Robotics UK Ltd Great Western Street Wednesbury West Midlands WS10 7LL UK</td>
<td>Tel. +44 121 505 9970 Fax +44 121 505 6589</td>
<td>service@kuka-robotics.co.uk www.kuka-robotics.co.uk</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Index

Numbers
- 2006/42/EC 56
- 2014/30/EU 56
- 2014/68/EC 57
- 95/16/EC 56
- 97/23/EC 57

A
- Accessories 9, 45
- Ambient temperature, operation 14, 16
- Ambient temperature, operation, Safe RDC 14, 16
- Ambient temperature, start-up 14, 16
- Ambient temperature, storage 14, 16
- Ambient temperature, transportation 14, 16
- Angle of rotation 32
- ANSI/RIA R.15.06-2012 57
- Applied norms and regulations 56
- Arm 9, 10
- Automatic mode 54
- Axis data 17
- Axis range 47
- Axis range limitation 49
- Axis range monitoring 49

B
- Base frame 9, 11
- Basic data 13, 15
- Brake defect 51
- Brake release device 50
- Braking distance 47

C
- CE mark 46
- Center of gravity 65
- Cleaning work 55
- Connecting cables 9, 14, 16, 45, 63
- Counterbalancing system 9, 11, 56

D
- Danger zone 47
- Declaration of conformity 46
- Declaration of incorporation 45, 46
- Decommissioning 56
- Dimensions, transport 65
- Disposal 56
- Documentation, industrial robot 5

E
- EC declaration of conformity 46
- Electrical installations 9
- Electromagnetic compatibility (EMC) 57
- EMC Directive 46, 56
- EN 60204-1 + A1 57
- EN 61000-6-2 57
- EN 61000-6-4 + A1 57
- EN 614-1 + A1 57
- EN ISO 10218-1 57
- EN ISO 12100 57
- EN ISO 13849-1 57
- EN ISO 13849-2 57
- EN ISO 13850 57
- Extension 32
- External axes 45, 47

F
- Faults 52
- Fork lift truck 66
- Foundry robots 13, 15
- Foundry, equipment 13, 15
- Function test 53

G
- General information 31
- General safety measures 51

H
- Handling equipment 67
- Hazardous substances 56
- Humidity rating 14, 16
- Hydropneumatic 11

I
- In-line wrist 9, 10
- In-line wrist, F variant 10
- Industrial robot 9, 45
- Intended use 46
- Interfaces 63
- Introduction 5

K
- KCP 47, 51
- KCP, KUKA Control Panel 32
- Keyboard, external 51
- KUKA Customer Support 71
- KUKA smartPAD 47

L
- Labeling 50
- Liability 45
- Lifting tackle 66, 67
- Linear unit 45
- Link arm 9, 11
- Loads acting on the mounting base 26
- Low Voltage Directive 46

M
- Machine data 53
- Machine frame mounting 62
- Machinery Directive 46, 56
- main axes 31
- Maintenance 55
- Manipulator 9, 45, 47
- Manual mode 54
- Mechanical axis range limitation 49
- Mechanical end stops 49