Contents

1 Introduction .. 5
 1.1 Industrial robot documentation .. 5
 1.2 Representation of warnings and notes .. 5

2 Purpose .. 7
 2.1 Target group .. 7
 2.2 Intended use ... 7

3 Product description .. 9
 3.1 Overview of the robot system .. 9
 3.2 Description of the robot .. 9

4 Technical data ... 13
 4.1 Intended use .. 13
 4.2 Basic data ... 13
 4.3 Axis data ... 14
 4.4 Payloads ... 16
 4.5 Mounting base loads .. 19
 4.6 Plates and labels .. 20
 4.7 Stopping distances and times, floor-mounted robots, KR 5 arc HW 23
 4.7.1 Stopping distances and stopping times for STOP 0, axis 1 to axis 3 23
 4.7.2 Stopping distances and stopping times for STOP 1, axis 1 24
 4.7.3 Stopping distances and stopping times for STOP 1, axis 2 26
 4.7.4 Stopping distances and stopping times for STOP 1, axis 3 28
 4.8 Stopping distances and times, KR 5 arc-C ... 28
 4.8.1 Stopping distances and stopping times for STOP 0, axis 1 to axis 3 28
 4.8.2 Stopping distances and stopping times for STOP 1, axis 1 29
 4.8.3 Stopping distances and stopping times for STOP 1, axis 2 31
 4.8.4 Stopping distances and stopping times for STOP 1, axis 3 33

5 Safety ... 35
 5.1 General .. 35
 5.1.1 Liability .. 35
 5.1.2 Intended use of the industrial robot .. 36
 5.1.3 EC declaration of conformity and declaration of incorporation 36
 5.1.4 Terms used .. 37
 5.2 Personnel ... 37
 5.3 Workspace, safety zone and danger zone ... 38
 5.4 Overview of protective equipment .. 39
 5.4.1 Mechanical end stops .. 39
 5.4.2 Mechanical axis range limitation (optional) ... 39
 5.4.3 Axis range monitoring (optional) ... 39
 5.4.4 Options for moving the manipulator without drive energy 40
 5.4.5 Labeling on the industrial robot .. 40
 5.5 Safety measures .. 41
 5.5.1 General safety measures ... 41
 5.5.2 Transportation ... 42
 5.5.3 Start-up and recommissioning .. 42
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.5.4</td>
<td>Manual mode</td>
<td>44</td>
</tr>
<tr>
<td>5.5.5</td>
<td>Automatic mode</td>
<td>44</td>
</tr>
<tr>
<td>5.5.6</td>
<td>Maintenance and repair</td>
<td>45</td>
</tr>
<tr>
<td>5.5.7</td>
<td>Decommissioning, storage and disposal</td>
<td>46</td>
</tr>
<tr>
<td>5.6</td>
<td>Applied norms and regulations</td>
<td>46</td>
</tr>
<tr>
<td>6</td>
<td>Planning</td>
<td>49</td>
</tr>
<tr>
<td>6.1</td>
<td>Mounting base with centering</td>
<td>49</td>
</tr>
<tr>
<td>6.2</td>
<td>Machine frame mounting with centering</td>
<td>51</td>
</tr>
<tr>
<td>7</td>
<td>Transportation</td>
<td>53</td>
</tr>
<tr>
<td>7.1</td>
<td>Transporting the robot</td>
<td>53</td>
</tr>
<tr>
<td>8</td>
<td>KUKA Service</td>
<td>57</td>
</tr>
<tr>
<td>8.1</td>
<td>Requesting support</td>
<td>57</td>
</tr>
<tr>
<td>8.2</td>
<td>KUKA Customer Support</td>
<td>57</td>
</tr>
<tr>
<td>Index</td>
<td></td>
<td>65</td>
</tr>
</tbody>
</table>
1 Introduction

1.1 Industrial robot documentation

The industrial robot documentation consists of the following parts:
- Documentation for the manipulator
- Documentation for the robot controller
- Operating and programming instructions for the System Software
- Instructions for options and accessories
- Parts catalog on storage medium

Each of these sets of instructions is a separate document.

1.2 Representation of warnings and notes

Safety

These warnings are relevant to safety and must be observed.

⚠️ **DANGER** These warnings mean that it is certain or highly probable that death or severe injuries will occur, if no precautions are taken.

⚠️ **WARNING** These warnings mean that death or severe injuries may occur, if no precautions are taken.

⚠️ **CAUTION** These warnings mean that minor injuries may occur, if no precautions are taken.

⚠️ **NOTICE** These warnings mean that damage to property may occur, if no precautions are taken.

These warnings contain references to safety-relevant information or general safety measures. These warnings do not refer to individual hazards or individual precautionary measures.

This warning draws attention to procedures which serve to prevent or remedy emergencies or malfunctions:

⚠️ **SAFETY INSTRUCTIONS** Procedures marked with this warning must be followed exactly.

Notices

These notices serve to make your work easier or contain references to further information.

💡 Tip to make your work easier or reference to further information.
2 Purpose

2.1 Target group

This documentation is aimed at users with the following knowledge and skills:

- Advanced knowledge of mechanical engineering
- Advanced knowledge of electrical and electronic systems
- Knowledge of the robot controller system

For optimal use of our products, we recommend that our customers take part in a course of training at KUKA College. Information about the training program can be found at www.kuka.com or can be obtained directly from our subsidiaries.

2.2 Intended use

Use

- Handling of welding tools for arc welding
- Handling of components in dry rooms

Misuse

Any use or application deviating from the intended use is deemed to be misuse and is not allowed. This includes e.g.:

- Use as a climbing aid
- Operation outside the permissible operating parameters
- Use in potentially explosive environments
- Use in underground mining

Deviations from the operating conditions specified in the technical data or the use of special functions or applications can lead to premature wear. KUKA Roboter GmbH must be consulted.

The robot system is an integral part of a complete system and may only be operated in a CE-compliant system.
3 Product description

3.1 Overview of the robot system

The robot system (Fig. 3-1) consists of the following components:

- Robot
- Robot controller
- Connecting cables
- KCP teach pendant
- Software
- Options, accessories

SafeRobot

The SafeRobot option is available for this robot.

In this case the robot moves within limits that have been configured. The actual position is continuously calculated and monitored by the SafeRDC. If the robot violates a monitoring limit or a safety parameter, it is stopped.

RoboTeam

The RoboTeam option is available for this robot.

RoboTeam allows the operation of cooperating robot systems. In the RoboTeam, up to 15 robots can work together in a group. One robot in the group always takes on the role of "master", while the remaining robots work as "slaves".

3.2 Description of the robot

Overview

The robot (Fig. 3-2) is designed as a 6-axis jointed-arm kinematic system. It consists of the following principal components:

- Hollow-shaft wrist
- Arm
- Link arm
The robot is fitted with a 2-axis hollow-shaft wrist. The hollow-shaft wrist contains axes 5 and 6. The motors of axes 5 and 6 are incorporated in this assembly. The axes are driven via toothed belts and gear units. The design enables the fluid supply to be routed directly through the center of axis 6 to the application.

For attaching end effectors (tools), the in-line wrist has a mounting flange.

The arm is the link between the hollow-shaft wrist and the link arm. It houses the motors of the wrist axes A 3 and A 4. The arm is driven by the motor of axis 3. The maximum permissible swivel angle is mechanically limited by a stop for each direction, plus and minus. The associated buffers are attached to the link arm. The entire drive unit of axis 4 is also integrated inside the arm. In addition, the cable harness for the wrist axes A 5 and A 6 is installed under a cover. Fastening facilities are provided for the welding application equipment on the rear of the arm. The fluid supply to the tool is routed axially through the arm.

The link arm is the assembly located between the arm and the rotating column. It consists of the link arm body and the buffers.

The rotating column houses the motors of axes 1 and 2. The rotational motion of axis 1 is performed by the rotating column. This is screwed to the base frame via the gear unit of axis 1 and is driven by a motor in the rotating column. The link arm is also mounted in the rotating column.
Base frame

The base frame is the base of the robot. It is screwed to the mounting base. The flexible tube for the electrical installations is fastened to the base frame. Also located on the base frame is the control cable junction box.

Electrical installations

The electrical installations include all the motor and control cables for the motors of axes 1 to 6. All connections are implemented as connectors in order to enable the motors to be exchanged quickly and reliably. The electrical installations also include the RDC box and the motor terminal box, both of which are mounted on the robot base frame. The connecting cables from the robot controller are connected to these junction boxes by means of connectors. The electrical installations also include a protective circuit.

For the supply to the wrist axis drives, an additional cable harness is integrated into the arm, which ensures that the cables are guided without kinking throughout the motion range of axis 4.
4 Technical data

4.1 Intended use

Use
- Handling of welding tools for arc welding
- Handling of components in dry rooms

Misuse
Any use or application deviating from the intended use is deemed to be misuse and is not allowed. This includes e.g.:
- Use as a climbing aid
- Operation outside the permissible operating parameters
- Use in potentially explosive environments
- Use in underground mining

NOTICE
Deviations from the operating conditions specified in the technical data or the use of special functions or applications can lead to premature wear. KUKA Roboter GmbH must be consulted.

The robot system is an integral part of a complete system and may only be operated in a CE-compliant system.

4.2 Basic data

<table>
<thead>
<tr>
<th>Basic data</th>
<th>KR 5 arc HW</th>
<th>KR 5-2 arc HW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>KR 5 arc HW</td>
<td>KR 5-2 arc HW</td>
</tr>
<tr>
<td>Number of axes</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Volume of working envelope</td>
<td>9.8 m³</td>
<td></td>
</tr>
<tr>
<td>Pose repeatability (ISO 9283)</td>
<td>±0.04 mm</td>
<td></td>
</tr>
<tr>
<td>Working envelope reference point</td>
<td>Intersection of axes 4 and 5</td>
<td></td>
</tr>
<tr>
<td>Weight</td>
<td>approx. 126 kg</td>
<td></td>
</tr>
<tr>
<td>Principal dynamic loads</td>
<td>See "Loads acting on the mounting base"</td>
<td></td>
</tr>
<tr>
<td>Protection rating of the robot</td>
<td>IP 54</td>
<td></td>
</tr>
<tr>
<td>Protection rating of the in-line wrist</td>
<td>IP 54</td>
<td></td>
</tr>
<tr>
<td>Sound level</td>
<td>< 75 dB (A) outside the working envelope</td>
<td></td>
</tr>
<tr>
<td>Mounting position</td>
<td>Floor, ceiling</td>
<td></td>
</tr>
<tr>
<td>Surface finish, paintwork</td>
<td>Base frame, covers on hollow-shaft wrist and arm: black (RAL 9005); moving parts: KUKA orange 2567</td>
<td></td>
</tr>
</tbody>
</table>

Ambient temperature

Operation	283 K to 328 K (+10 °C to +55 °C)
Operation with Safe RDC	283 K to 323 K (+10 °C to +50 °C)
Storage and transportation	233 K to 333 K (-40 °C to +60 °C)
Connecting cables

<table>
<thead>
<tr>
<th>Cable designation</th>
<th>Connector designation</th>
<th>Interface with robot</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor cable</td>
<td>X20 - X30</td>
<td>Harting connectors at both ends</td>
</tr>
<tr>
<td>Control cable</td>
<td>X21 - X31</td>
<td>Harting connectors at both ends</td>
</tr>
<tr>
<td>2. Control cable (SafeRobot)</td>
<td>X21.1 - X41</td>
<td>Harting connectors at both ends</td>
</tr>
</tbody>
</table>

Cable lengths

<table>
<thead>
<tr>
<th>Standard</th>
<th>7 m, 15 m, 25 m, 35 m, 50 m*</th>
</tr>
</thead>
<tbody>
<tr>
<td>with RoboTeam</td>
<td>7 m, 15 m, 25 m, 35 m</td>
</tr>
<tr>
<td>with SafeRobot</td>
<td>7 m, 15 m, 25 m, 35 m</td>
</tr>
</tbody>
</table>

* With connecting cables >25 m, the ground conductor is included in the scope of supply.

For detailed specifications of the connecting cables, see .

4.3 Axis data

Axis data

<table>
<thead>
<tr>
<th>Axis</th>
<th>Range of motion, software-limited</th>
<th>Speed with rated payload</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+/-155°</td>
<td>156 °/s</td>
</tr>
<tr>
<td>2</td>
<td>+65° to -180°</td>
<td>156 °/s</td>
</tr>
<tr>
<td>3</td>
<td>+170° to -110°</td>
<td>227 °/s</td>
</tr>
<tr>
<td>4</td>
<td>+/-165°</td>
<td>390 °/s</td>
</tr>
<tr>
<td>5</td>
<td>+/-140°</td>
<td>390 °/s</td>
</tr>
<tr>
<td>6</td>
<td>Infinitely rotating</td>
<td>858 °/s</td>
</tr>
</tbody>
</table>

The direction of motion and the arrangement of the individual axes may be noted from the following diagram.
The diagram (Fig. 4-2) shows the shape and size of the working envelope.

The reference point for the working envelope is the intersection of axes 4 and 5.
4.4 Payloads

<table>
<thead>
<tr>
<th>Payloads</th>
<th>KR 5 arc HW</th>
<th>KR 5-2 arc HW</th>
<th>IW 5 arc HW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Robot</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>In-line wrist</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rated payload</td>
<td>5 kg</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 4-2: Working envelope

1 Mounting flange interference contour
Load center of gravity P

For all payloads, the load center of gravity refers to the distance from the face of the mounting flange on axis 6. Refer to the payload diagram for the nominal distance.

Payload diagram

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distance of the load center of gravity L_z (horizontal)</td>
<td>100 mm</td>
</tr>
<tr>
<td>Distance of the load center of gravity L_{xy} (vertical)</td>
<td>50 mm</td>
</tr>
<tr>
<td>Permissible mass moment of inertia</td>
<td>0.10 kgm^2</td>
</tr>
<tr>
<td>Max. total load</td>
<td>37 kg</td>
</tr>
<tr>
<td>Supplementary load, arm</td>
<td>12 kg</td>
</tr>
<tr>
<td>Supplementary load, link arm</td>
<td>None</td>
</tr>
<tr>
<td>Supplementary load, rotating column</td>
<td>20 kg</td>
</tr>
<tr>
<td>Supplementary load, base frame</td>
<td>None</td>
</tr>
</tbody>
</table>

Fig. 4-3: Payload diagram
NOTICE

This loading curve corresponds to the maximum load capacity. Both values (payload and mass moment of inertia) must be checked in all cases. Exceeding this capacity will reduce the service life of the robot and overload the motors and the gears; in any such case the KUKA Roboter GmbH must be consulted beforehand.

The values determined here are necessary for planning the robot application. For commissioning the robot, additional input data are required in accordance with the operating and programming instructions of the KUKA System Software.

The mass inertia must be verified using KUKA.Load. It is imperative for the load data to be entered in the robot controller!

Mounting flange

<table>
<thead>
<tr>
<th>Mounting flange (hole circle)</th>
<th>58 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Screw grade</td>
<td>10.9</td>
</tr>
<tr>
<td>Screw size</td>
<td>M4</td>
</tr>
<tr>
<td>Clamping length</td>
<td>1.5 x nominal diameter</td>
</tr>
<tr>
<td>Depth of engagement</td>
<td>min. 6 mm, max. 7 mm</td>
</tr>
<tr>
<td>Locating element</td>
<td>4^H_7</td>
</tr>
</tbody>
</table>

The mounting flange is depicted (>>> Fig. 4-4) with axes 4 and 6 in the zero position. The symbol X_m indicates the position of the locating element (bushing) in the zero position.

Interface A 6

The hollow-shaft wrist is provided with a special interface allowing welding equipment to be connected to the swivel housing. The dimensions and design of this interface can be seen in the following illustration.
4 Technical data

Supplementary load

The robot can carry supplementary loads (>>> Fig. 4-6) on the arm. When mounting the supplementary loads, be careful to observe the maximum permissible total load. The dimensions and positions of the installation options can be seen in the following diagram.

Fig. 4-5: Interface A 6

Fig. 4-6: Supplementary load on arm

4.5 Mounting base loads

Loads acting on the mounting base

The specified forces and moments already include the payload and the inertia force (weight) of the robot.
4.6 Plates and labels

Plates and labels

The following plates and labels are attached to the robot. They must not be removed or rendered illegible. Illegible plates and labels must be replaced.

Fig. 4-7: Loads acting on the mounting base

<table>
<thead>
<tr>
<th>Type of load</th>
<th>Force/torque/mass</th>
</tr>
</thead>
</table>
| F_v = vertical force | $F_{v\text{ normal}} = 1,616\, \text{N}$
$F_{v\text{ max}} = 2,132\, \text{N}$ |
| F_h = horizontal force | $F_{h\text{ normal}} = 1,301\, \text{N}$
$F_{h\text{ max}} = 2,033\, \text{N}$ |
| M_k = tilting moment | $M_{k\text{ normal}} = 1,206\, \text{Nm}$
$M_{k\text{ max}} = 1,918\, \text{Nm}$ |
| M_r = torque | $M_{r\text{ normal}} = 524\, \text{Nm}$
$M_{r\text{ max}} = 1,671\, \text{Nm}$ |
| Total mass for load acting on the mounting base | 143 kg |
| Robot | 126 kg |
| Total load (suppl. load on arm + rated payload) | 17 kg |

NOTICE
The supplementary loads on the base frame and rotating column are not taken into consideration in the calculation of the mounting base load. These supplementary loads must be taken into consideration for F_v.
Technical data

Fig. 4-8: Location of plates and labels

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
</table>
| 1 | High voltage
Any improper handling can lead to contact with current-carrying components. Electric shock hazard!

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
</table>
| 2 | Hot surface
During operation of the robot, surface temperatures may be reached that could result in burn injuries. Protective gloves must be worn!

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
</table>
| 3 | Secure the axes
Before exchanging any motor, secure the corresponding axis through safeguarding by suitable means/devices to protect against possible movement. The axis can move. Risk of crushing!

CAUTION
Before removing the motor, secure robot axis to prevent it from turning!

ATTENTION
Avant de retirer le moteur, protéger l’axe du robot contre le basculement!

VORSICHT
Vor Entfernen des Motors, Roboterachse gegen Bewegungen sichern!
Work on the robot
Before start-up, transportation or maintenance, read and follow the assembly and operating instructions.

Identification plate
Content according to Machinery Directive.
4 Technical data

4.7 Stopping distances and times, floor-mounted robots, KR 5 arc HW

4.7.1 Stopping distances and stopping times for STOP 0, axis 1 to axis 3

The table shows the stopping distances and stopping times after a STOP 0 (category 0 stop) is triggered. The values refer to the following configuration:

- Extension l = 100%
- Program override POV = 100%
- Mass m = maximum load (rated load + supplementary load on arm)

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Stopping distance (°)</th>
<th>Stopping time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>CAUTION</td>
<td>Move the robot into its transport position before removing the mounting base!</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ATTENTION</td>
<td>Amener le robot en position de transport avant de défaire la fixation aux fondations!</td>
<td></td>
</tr>
<tr>
<td></td>
<td>VORSICHT</td>
<td>Roboter vor Lösen der Fundamentbefestigung in Transportstellung bringen!</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Transport position</td>
<td>Before loosening the bolts of the mounting base, the robot must be in the transport position as indicated in the table. Risk of toppling!</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Danger zone</td>
<td>Entering the danger zone of the robot is prohibited if the robot is in operation or ready for operation. Risk of injury!</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Stopping distance (°)</th>
<th>Stopping time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td></td>
<td>29.38</td>
<td>0.280</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>34.33</td>
<td>0.316</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>44.18</td>
<td>0.340</td>
</tr>
</tbody>
</table>
4.7.2 Stopping distances and stopping times for STOP 1, axis 1

Fig. 4-9: Stopping distances for STOP 1, axis 1
Fig. 4-10: Stopping times for STOP 1, axis 1
4.7.3 Stopping distances and stopping times for STOP 1, axis 2

Fig. 4-11: Stopping distances for STOP 1, axis 2
Fig. 4-12: Stopping times for STOP 1, axis 2
4.7.4 Stopping distances and stopping times for STOP 1, axis 3

The table shows the stopping distances and stopping times after a STOP 0 (category 0 stop) is triggered. The values refer to the following configuration:

- Extension $l = 100\%$
- Program override POV = 100\%
- Mass $m =$ maximum load (rated load + supplementary load on arm)

<table>
<thead>
<tr>
<th>Axis</th>
<th>Stopping distance (°)</th>
<th>Stopping time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Axis 1</td>
<td>34.57</td>
<td>0.297</td>
</tr>
<tr>
<td>Axis 2</td>
<td>36.95</td>
<td>0.314</td>
</tr>
<tr>
<td>Axis 3</td>
<td>60.17</td>
<td>0.340</td>
</tr>
</tbody>
</table>

Fig. 4-13: Stopping distances for STOP 1, axis 3

Fig. 4-14: Stopping times for STOP 1, axis 3

4.8 Stopping distances and times, KR 5 arc-C

4.8.1 Stopping distances and stopping times for STOP 0, axis 1 to axis 3

The table shows the stopping distances and stopping times after a STOP 0 (category 0 stop) is triggered. The values refer to the following configuration:

- Extension $l = 100\%$
- Program override POV = 100\%
- Mass $m =$ maximum load (rated load + supplementary load on arm)
4.8.2 Stopping distances and stopping times for STOP 1, axis 1

Fig. 4-15: Stopping distances for STOP 1, axis 1
Fig. 4-16: Stopping times for STOP 1, axis 1
4.8.3 Stopping distances and stopping times for STOP 1, axis 2

Fig. 4-17: Stopping distances for STOP 1, axis 2
Fig. 4-18: Stopping times for STOP 1, axis 2
4.8.4 Stopping distances and stopping times for STOP 1, axis 3

Fig. 4-19: Stopping distances for STOP 1, axis 3

Fig. 4-20: Stopping times for STOP 1, axis 3
5 Safety

5.1 General

This “Safety” chapter refers to a mechanical component of an industrial robot.

If the mechanical component is used together with a KUKA robot controller, the “Safety” chapter of the operating instructions or assembly instructions of the robot controller must be used!

This contains all the information provided in this “Safety” chapter. It also contains additional safety information relating to the robot controller which must be observed.

Where this “Safety” chapter uses the term “industrial robot”, this also refers to the individual mechanical component if applicable.

5.1.1 Liability

The device described in this document is either an industrial robot or a component thereof.

Components of the industrial robot:

- Manipulator
- Robot controller
- Teach pendant
- Connecting cables
- External axes (optional)
 - e.g. linear unit, turn-tilt table, positioner
- Software
- Options, accessories

The industrial robot is built using state-of-the-art technology and in accordance with the recognized safety rules. Nevertheless, misuse of the industrial robot may constitute a risk to life and limb or cause damage to the industrial robot and to other material property.

The industrial robot may only be used in perfect technical condition in accordance with its designated use and only by safety-conscious persons who are fully aware of the risks involved in its operation. Use of the industrial robot is subject to compliance with this document and with the declaration of incorporation supplied together with the industrial robot. Any functional disorders affecting safety must be rectified immediately.

Safety information

Safety information cannot be held against KUKA Roboter GmbH. Even if all safety instructions are followed, this is not a guarantee that the industrial robot will not cause personal injuries or material damage.

No modifications may be carried out to the industrial robot without the authorization of KUKA Roboter GmbH. Additional components (tools, software, etc.), not supplied by KUKA Roboter GmbH, may be integrated into the industrial robot. The user is liable for any damage these components may cause to the industrial robot or to other material property.

In addition to the Safety chapter, this document contains further safety instructions. These must also be observed.
5.1.2 Intended use of the industrial robot

The industrial robot is intended exclusively for the use designated in the “Purpose” chapter of the operating instructions or assembly instructions.

Any use or application deviating from the intended use is deemed to be misuse and is not allowed. The manufacturer is not liable for any damage resulting from such misuse. The risk lies entirely with the user.

Operation of the industrial robot in accordance with its intended use also requires compliance with the operating and assembly instructions for the individual components, with particular reference to the maintenance specifications.

Misuse

Any use or application deviating from the intended use is deemed to be misuse and is not allowed. This includes e.g.:

- Transportation of persons and animals
- Use as a climbing aid
- Operation outside the specified operating parameters
- Use in potentially explosive environments
- Operation without additional safeguards
- Outdoor operation
- Underground operation

5.1.3 EC declaration of conformity and declaration of incorporation

The industrial robot constitutes partly completed machinery as defined by the EC Machinery Directive. The industrial robot may only be put into operation if the following preconditions are met:

- The industrial robot is integrated into a complete system.
 or: The industrial robot, together with other machinery, constitutes a complete system.
 or: All safety functions and safeguards required for operation in the complete machine as defined by the EC Machinery Directive have been added to the industrial robot.
- The complete system complies with the EC Machinery Directive. This has been confirmed by means of an assessment of conformity.

Declaration of conformity

The system integrator must issue a declaration of conformity for the complete system in accordance with the Machinery Directive. The declaration of conformity forms the basis for the CE mark for the system. The industrial robot must always be operated in accordance with the applicable national laws, regulations and standards.

The robot controller is CE certified under the EMC Directive and the Low Voltage Directive.

Declaration of incorporation

The partly completed machinery is supplied with a declaration of incorporation in accordance with Annex II B of the EC Machinery Directive 2006/42/EC. The assembly instructions and a list of essential requirements complied with in accordance with Annex I are integral parts of this declaration of incorporation.

The declaration of incorporation declares that the start-up of the partly completed machinery is not allowed until the partly completed machinery has been incorporated into machinery, or has been assembled with other parts to form machinery, and this machinery complies with the terms of the EC Machinery Directive, and the EC declaration of conformity is present in accordance with Annex II A.
5.1.4 Terms used

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Axis range</td>
<td>Range of each axis, in degrees or millimeters, within which it may move. The axis range must be defined for each axis.</td>
</tr>
<tr>
<td>Stopping distance</td>
<td>Stopping distance = reaction distance + braking distance. The stopping distance is part of the danger zone.</td>
</tr>
<tr>
<td>Workspace</td>
<td>The manipulator is allowed to move within its workspace. The workspace is derived from the individual axis ranges.</td>
</tr>
<tr>
<td>Operator (User)</td>
<td>The user of the industrial robot can be the management, employer or delegated person responsible for use of the industrial robot.</td>
</tr>
<tr>
<td>Danger zone</td>
<td>The danger zone consists of the workspace and the stopping distances.</td>
</tr>
<tr>
<td>Service life</td>
<td>The service life of a safety-relevant component begins at the time of delivery of the component to the customer. The service life is not affected by whether the component is used in a robot controller or elsewhere or not, as safety-relevant components are also subject to aging during storage.</td>
</tr>
<tr>
<td>KCP</td>
<td>KUKA Control Panel Teach pendant for the KR C2/KR C2 edition2005 The KCP has all the operator control and display functions required for operating and programming the industrial robot.</td>
</tr>
<tr>
<td>KUKA smartPAD</td>
<td>see “smartPAD”</td>
</tr>
<tr>
<td>Manipulator</td>
<td>The robot arm and the associated electrical installations</td>
</tr>
<tr>
<td>Safety zone</td>
<td>The safety zone is situated outside the danger zone.</td>
</tr>
<tr>
<td>smartPAD</td>
<td>Teach pendant for the KR C4 The smartPAD has all the operator control and display functions required for operating and programming the industrial robot.</td>
</tr>
<tr>
<td>Stop category 0</td>
<td>The drives are deactivated immediately and the brakes are applied. The manipulator and any external axes (optional) perform path-oriented braking. Note: This stop category is called STOP 0 in this document.</td>
</tr>
<tr>
<td>Stop category 1</td>
<td>The manipulator and any external axes (optional) perform path-maintaining braking. The drives are deactivated after 1 s and the brakes are applied. Note: This stop category is called STOP 1 in this document.</td>
</tr>
<tr>
<td>Stop category 2</td>
<td>The drives are not deactivated and the brakes are not applied. The manipulator and any external axes (optional) are braked with a normal braking ramp. Note: This stop category is called STOP 2 in this document.</td>
</tr>
<tr>
<td>System integrator (plant integrator)</td>
<td>System integrators are people who safely integrate the industrial robot into a complete system and commission it.</td>
</tr>
<tr>
<td>T1</td>
<td>Test mode, Manual Reduced Velocity (<= 250 mm/s)</td>
</tr>
<tr>
<td>T2</td>
<td>Test mode, Manual High Velocity (> 250 mm/s permissible)</td>
</tr>
<tr>
<td>External axis</td>
<td>Motion axis which is not part of the manipulator but which is controlled using the robot controller, e.g. KUKA linear unit, turn-tilt table, Posiflex.</td>
</tr>
</tbody>
</table>

5.2 Personnel

The following persons or groups of persons are defined for the industrial robot:

- User
Personnel

- All persons working with the industrial robot must have read and understood the industrial robot documentation, including the safety chapter.

User

- The user must observe the labor laws and regulations. This includes e.g.:
 - The user must comply with his monitoring obligations.
 - The user must carry out briefing at defined intervals.

Personnel

- Personnel must be instructed, before any work is commenced, in the type of work involved and what exactly it entails as well as any hazards which may exist. Instruction must be carried out regularly. Instruction is also required after particular incidents or technical modifications.

 Personnel includes:
 - System integrator
 - Operators, subdivided into:
 - Start-up, maintenance and service personnel
 - Operating personnel
 - Cleaning personnel

System integrator

- The industrial robot is safely integrated into a complete system by the system integrator.

 The system integrator is responsible for the following tasks:
 - Installing the industrial robot
 - Connecting the industrial robot
 - Performing risk assessment
 - Implementing the required safety functions and safeguards
 - Issuing the declaration of conformity
 - Attaching the CE mark
 - Creating the operating instructions for the complete system

Operator

- The operator must meet the following preconditions:
 - The operator must be trained for the work to be carried out.
 - Work on the industrial robot must only be carried out by qualified personnel. These are people who, due to their specialist training, knowledge and experience, and their familiarization with the relevant standards, are able to assess the work to be carried out and detect any potential hazards.

 Work on the electrical and mechanical equipment of the industrial robot may only be carried out by specially trained personnel.

5.3 Workspace, safety zone and danger zone

Workspaces are to be restricted to the necessary minimum size. A workspace must be safeguarded using appropriate safeguards.
The safeguards (e.g. safety gate) must be situated inside the safety zone. In the case of a stop, the manipulator and external axes (optional) are braked and come to a stop within the danger zone.

The danger zone consists of the workspace and the stopping distances of the manipulator and external axes (optional). It must be safeguarded by means of physical safeguards to prevent danger to persons or the risk of material damage.

5.4 Overview of protective equipment

The protective equipment of the mechanical component may include:

- Mechanical end stops
- Mechanical axis range limitation (optional)
- Axis range monitoring (optional)
- Release device (optional)
- Labeling of danger areas

Not all equipment is relevant for every mechanical component.

5.4.1 Mechanical end stops

Depending on the robot variant, the axis ranges of the main and wrist axes of the manipulator are partially limited by mechanical end stops.

Additional mechanical end stops can be installed on the external axes.

WARNING If the manipulator or an external axis hits an obstruction or a mechanical end stop or axis range limitation, the manipulator can no longer be operated safely. The manipulator must be taken out of operation and KUKA Roboter GmbH must be consulted before it is put back into operation.

5.4.2 Mechanical axis range limitation (optional)

Some manipulators can be fitted with mechanical axis range limitation in axes A1 to A3. The adjustable axis range limitation systems restrict the working range to the required minimum. This increases personal safety and protection of the system.

In the case of manipulators that are not designed to be fitted with mechanical axis range limitation, the workspace must be laid out in such a way that there is no danger to persons or material property, even in the absence of mechanical axis range limitation.

If this is not possible, the workspace must be limited by means of photoelectric barriers, photoelectric curtains or obstacles on the system side. There must be no shearing or crushing hazards at the loading and transfer areas.

This option is not available for all robot models. Information on specific robot models can be obtained from KUKA Roboter GmbH.

5.4.3 Axis range monitoring (optional)

Some manipulators can be fitted with dual-channel axis range monitoring systems in main axes A1 to A3. The positioner axes may be fitted with additional axis range monitoring systems. The safety zone for an axis can be adjusted
and monitored using an axis range monitoring system. This increases personal safety and protection of the system.

This option is not available for the KR C4. This option is not available for all robot models. Information on specific robot models can be obtained from KUKA Roboter GmbH.

5.4.4 Options for moving the manipulator without drive energy

The system user is responsible for ensuring that the training of personnel with regard to the response to emergencies or exceptional situations also includes how the manipulator can be moved without drive energy.

Description

The following options are available for moving the manipulator without drive energy after an accident or malfunction:

- Release device (optional)
 The release device can be used for the main axis drive motors and, depending on the robot variant, also for the wrist axis drive motors.

- Brake release device (option)
 The brake release device is designed for robot variants whose motors are not freely accessible.

- Moving the wrist axes directly by hand
 There is no release device available for the wrist axes of variants in the low payload category. This is not necessary because the wrist axes can be moved directly by hand.

Information about the options available for the various robot models and about how to use them can be found in the assembly and operating instructions for the robot or requested from KUKA Roboter GmbH.

NOTICE
Moving the manipulator without drive energy can damage the motor brakes of the axes concerned. The motor must be replaced if the brake has been damaged. The manipulator may therefore be moved without drive energy only in emergencies, e.g. for rescuing persons.

5.4.5 Labeling on the industrial robot

All plates, labels, symbols and marks constitute safety-relevant parts of the industrial robot. They must not be modified or removed.

Labeling on the industrial robot consists of:

- Identification plates
- Warning signs
- Safety symbols
- Designation labels
- Cable markings
- Rating plates

Further information is contained in the technical data of the operating instructions or assembly instructions of the components of the industrial robot.
5.5 Safety measures

5.5.1 General safety measures

The industrial robot may only be used in perfect technical condition in accordance with its intended use and only by safety-conscious persons. Operator errors can result in personal injury and damage to property.

It is important to be prepared for possible movements of the industrial robot even after the robot controller has been switched off and locked out. Incorrect installation (e.g. overload) or mechanical defects (e.g. brake defect) can cause the manipulator or external axes to sag. If work is to be carried out on a switched-off industrial robot, the manipulator and external axes must first be moved into a position in which they are unable to move on their own, whether the payload is mounted or not. If this is not possible, the manipulator and external axes must be secured by appropriate means.

DANGER In the absence of operational safety functions and safeguards, the industrial robot can cause personal injury or material damage. If safety functions or safeguards are dismantled or deactivated, the industrial robot may not be operated.

DANGER Standing underneath the robot arm can cause death or injuries. For this reason, standing underneath the robot arm is prohibited!

CAUTION The motors reach temperatures during operation which can cause burns to the skin. Contact must be avoided. Appropriate safety precautions must be taken, e.g. protective gloves must be worn.

KCP/smartPAD

The user must ensure that the industrial robot is only operated with the KCP/smartPAD by authorized persons.

If more than one KCP/smartPAD is used in the overall system, it must be ensured that each device is unambiguously assigned to the corresponding industrial robot. They must not be interchanged.

WARNING The operator must ensure that decoupled KCPs/smartPADs are immediately removed from the system and stored out of sight and reach of personnel working on the industrial robot. This serves to prevent operational and non-operational EMERGENCY STOP devices from becoming interchanged. Failure to observe this precaution may result in death, severe injuries or considerable damage to property.

External keyboard, external mouse

An external keyboard and/or external mouse may only be used if the following conditions are met:
- Start-up or maintenance work is being carried out.
- The drives are switched off.
- There are no persons in the danger zone.

The KCP/smartPAD must not be used as long as an external keyboard and/or external mouse are connected to the control cabinet.

The external keyboard and/or external mouse must be removed from the control cabinet as soon as the start-up or maintenance work is completed or the KCP/smartPAD is connected.
Modifications

After modifications to the industrial robot, checks must be carried out to ensure the required safety level. The valid national or regional work safety regulations must be observed for this check. The correct functioning of all safety functions must also be tested.

New or modified programs must always be tested first in Manual Reduced Velocity mode (T1).

After modifications to the industrial robot, existing programs must always be tested first in Manual Reduced Velocity mode (T1). This applies to all components of the industrial robot and includes modifications to the software and configuration settings.

Faults

The following tasks must be carried out in the case of faults in the industrial robot:

- Switch off the robot controller and secure it (e.g. with a padlock) to prevent unauthorized persons from switching it on again.
- Indicate the fault by means of a label with a corresponding warning (tag-out).
- Keep a record of the faults.
- Eliminate the fault and carry out a function test.

5.5.2 Transportation

Manipulator

The prescribed transport position of the manipulator must be observed. Transportation must be carried out in accordance with the operating instructions or assembly instructions of the robot.

Avoid vibrations and impacts during transportation in order to prevent damage to the manipulator.

Robot controller

The prescribed transport position of the robot controller must be observed. Transportation must be carried out in accordance with the operating instructions or assembly instructions of the robot controller.

Avoid vibrations and impacts during transportation in order to prevent damage to the robot controller.

External axis (optional)

The prescribed transport position of the external axis (e.g. KUKA linear unit, turn-tilt table, positioner) must be observed. Transportation must be carried out in accordance with the operating instructions or assembly instructions of the external axis.

5.5.3 Start-up and recommissioning

Before starting up systems and devices for the first time, a check must be carried out to ensure that the systems and devices are complete and operational, that they can be operated safely and that any damage is detected.

The valid national or regional work safety regulations must be observed for this check. The correct functioning of all safety circuits must also be tested.

The passwords for logging onto the KUKA System Software as “Expert” and “Administrator” must be changed before start-up and must only be communicated to authorized personnel.
Function test

The following tests must be carried out before start-up and recommissioning:

- The industrial robot is correctly installed and fastened in accordance with the specifications in the documentation.
- There is no damage to the robot that could be attributed to external forces. Example: Dents or abrasion that could be caused by an impact or collision.
- There are no foreign bodies or loose parts on the industrial robot.
- All required safety equipment is correctly installed and operational.
- The power supply ratings of the industrial robot correspond to the local supply voltage and mains type.
- The ground conductor and the equipotential bonding cable are sufficiently rated and correctly connected.
- The connecting cables are correctly connected and the connectors are locked.

Machine data

It must be ensured that the rating plate on the robot controller has the same machine data as those entered in the declaration of incorporation. The machine data on the rating plate of the manipulator and the external axes (optional) must be entered during start-up.

- The industrial robot must not be moved if incorrect machine data are loaded. Death, severe injuries or considerable damage to property may otherwise result. The correct machine data must be loaded.
5.5.4 Manual mode

Manual mode is the mode for setup work. Setup work is all the tasks that have to be carried out on the industrial robot to enable automatic operation. Setup work includes:

- Jog mode
- Teaching
- Programming
- Program verification

The following must be taken into consideration in manual mode:

- If the drives are not required, they must be switched off to prevent the manipulator or the external axes (optional) from being moved unintentionally.
- New or modified programs must always be tested first in Manual Reduced Velocity mode (T1).
- The manipulator, tooling or external axes (optional) must never touch or project beyond the safety fence.
- Workpieces, tooling and other objects must not become jammed as a result of the industrial robot motion, nor must they lead to short-circuits or be liable to fall off.
- All setup work must be carried out, where possible, from outside the safeguarded area.

If the setup work has to be carried out inside the safeguarded area, the following must be taken into consideration:

In Manual Reduced Velocity mode (T1):

- If it can be avoided, there must be no other persons inside the safeguarded area.
 - If it is necessary for there to be several persons inside the safeguarded area, the following must be observed:
 - Each person must have an enabling device.
 - All persons must have an unimpeded view of the industrial robot.
 - Eye-contact between all persons must be possible at all times.
 - The operator must be so positioned that he can see into the danger area and get out of harm's way.

In Manual High Velocity mode (T2):

- This mode may only be used if the application requires a test at a velocity higher than possible in T1 mode.
- Teaching and programming are not permissible in this operating mode.
- Before commencing the test, the operator must ensure that the enabling devices are operational.
- The operator must be positioned outside the danger zone.
- There must be no other persons inside the safeguarded area. It is the responsibility of the operator to ensure this.

5.5.5 Automatic mode

Automatic mode is only permissible in compliance with the following safety measures:

- All safety equipment and safeguards are present and operational.
- There are no persons in the system.
- The defined working procedures are adhered to.
If the manipulator or an external axis (optional) comes to a standstill for no apparent reason, the danger zone must not be entered until an EMERGENCY STOP has been triggered.

5.5.6 Maintenance and repair

After maintenance and repair work, checks must be carried out to ensure the required safety level. The valid national or regional work safety regulations must be observed for this check. The correct functioning of all safety functions must also be tested.

The purpose of maintenance and repair work is to ensure that the system is kept operational or, in the event of a fault, to return the system to an operational state. Repair work includes troubleshooting in addition to the actual repair itself.

The following safety measures must be carried out when working on the industrial robot:

- Carry out work outside the danger zone. If work inside the danger zone is necessary, the user must define additional safety measures to ensure the safe protection of personnel.
- Switch off the industrial robot and secure it (e.g. with a padlock) to prevent it from being switched on again. If it is necessary to carry out work with the robot controller switched on, the user must define additional safety measures to ensure the safe protection of personnel.
- If it is necessary to carry out work with the robot controller switched on, this may only be done in operating mode T1.
- Label the system with a sign indicating that work is in progress. This sign must remain in place, even during temporary interruptions to the work.
- The EMERGENCY STOP devices must remain active. If safety functions or safeguards are deactivated during maintenance or repair work, they must be reactivated immediately after the work is completed.

Faulty components must be replaced using new components with the same article numbers or equivalent components approved by KUKA Roboter GmbH for this purpose.

Cleaning and preventive maintenance work is to be carried out in accordance with the operating instructions.

Robot controller

Even when the robot controller is switched off, parts connected to peripheral devices may still carry voltage. The external power sources must therefore be switched off if work is to be carried out on the robot controller.

The ESD regulations must be adhered to when working on components in the robot controller.

 Voltages in excess of 50 V (up to 600 V) can be present in various components for several minutes after the robot controller has been switched off! To prevent life-threatening injuries, no work may be carried out on the industrial robot in this time.

Water and dust must be prevented from entering the robot controller.
Some robot variants are equipped with a hydropneumatic, spring or gas cylinder counterbalancing system.

The hydropneumatic and gas cylinder counterbalancing systems are pressure equipment and, as such, are subject to obligatory equipment monitoring and the provisions of the Pressure Equipment Directive.

The user must comply with the applicable national laws, regulations and standards pertaining to pressure equipment.

Inspection intervals in Germany in accordance with Industrial Safety Order, Sections 14 and 15. Inspection by the user before commissioning at the installation site.

The following safety measures must be carried out when working on the counterbalancing system:

- The manipulator assemblies supported by the counterbalancing systems must be secured.
- Work on the counterbalancing systems must only be carried out by qualified personnel.

The following safety measures must be carried out when handling hazardous substances:

- Avoid prolonged and repeated intensive contact with the skin.
- Avoid breathing in oil spray or vapors.
- Clean skin and apply skin cream.

To ensure safe use of our products, we recommend that our customers regularly request up-to-date safety data sheets from the manufacturers of hazardous substances.

5.7 Decommissioning, storage and disposal

The industrial robot must be decommissioned, stored and disposed of in accordance with the applicable national laws, regulations and standards.

5.6 Applied norms and regulations

<table>
<thead>
<tr>
<th>Name</th>
<th>Definition</th>
<th>Edition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year</td>
<td>Directive/Standard</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>2008</td>
<td>EN ISO 13850 Safety of machinery: Emergency stop - Principles for design</td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td>2 Safety of machinery: Safety-related parts of control systems - Part 2: Validation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Note: Content equivalent to ANSI/RIA R.15.06-2012, Part 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 Generic standards; Immunity for industrial environments</td>
<td></td>
</tr>
<tr>
<td>Standard Code</td>
<td>Standard Details</td>
<td>Year</td>
</tr>
<tr>
<td>---------------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>EN 61000-6-4 + A1</td>
<td>Electromagnetic compatibility (EMC): Part 6-4: Generic standards; Emission standard for industrial environments</td>
<td>2011</td>
</tr>
<tr>
<td>EN 60204-1 + A1</td>
<td>Safety of machinery: Electrical equipment of machines - Part 1: General requirements</td>
<td>2009</td>
</tr>
</tbody>
</table>
6 Planning

6.1 Mounting base with centering

Description
The mounting base with centering is used when the robot is fastened to the floor, i.e. directly on a concrete foundation.

The mounting base with centering consists of:
- Bedplates
- Resin-bonded anchors (chemical anchors)
- Fastening elements

This mounting variant requires a level and smooth surface on a concrete foundation with adequate load bearing capacity. The concrete foundation must be able to accommodate the forces occurring during operation. There must be no layers of insulation or screed between the bedplates and the concrete foundation.

The minimum dimensions must be observed.

![Mounting base with centering diagram](image)

Fig. 6-1: Mounting base with centering

1. Locating pin for centering
2. Allen screw
3. Bedplate
4. Resin-bonded anchor

Grade of concrete for foundations
When producing foundations from concrete, observe the load-bearing capacity of the ground and the country-specific construction regulations. There must be no layers of insulation or screed between the bedplates and the concrete foundation. The quality of the concrete must meet the requirements of the following standard:

Dimensioned drawing
The following illustration (Fig. 6-2) provides all the necessary information on the mounting base, together with the required foundation data.
Fig. 6-2: Mounting base with centering, dimensioned drawing

1 Allen screws
2 Locating pin, long
3 Bedplate

To ensure that the anchor forces are safely transmitted to the foundation, observe the dimensions for concrete foundations specified in the following illustration (Fig. 6-3).

Fig. 6-3: Cross-section of foundations
6.2 Machine frame mounting with centering

Description

The machine frame mounting with centering is used for installing the robot on a steel structure provided by the customer or on a carriage of a KUKA linear unit. The mounting surface for the robot must be machined and of an appropriate quality. The robot is fastened to the machine frame mounting option using 4 Allen screws. Two locating pins are used for centering.

The machine frame mounting assembly consists of:

- Locating pins
- Fasteners

Fig. 6-4: Machine frame mounting

1 Allen screw with conical spring washer
2 Mounting surface
3 Locating pin

Dimensioned drawing

The following illustrations provide all the necessary information on machine frame mounting, together with the required foundation data.
Fig. 6-5: Machine frame mounting with centering

1. Allen screw
2. Mounting surface, machined
3. Locating pin
7 Transportation

7.1 Transporting the robot

Move the robot into its transport position (Fig. 7-1) each time it is transported. It must be ensured that the robot is stable while it is being transported. The robot must remain in its transport position until it has been fastened in position. Before the robot is lifted, it must be ensured that it is free from obstructions. Remove all transport safeguards, such as nails and screws, in advance. First remove any rust or glue on contact surfaces.

The robot is in the transport position when the axes are in the following positions:

<table>
<thead>
<tr>
<th>Axis</th>
<th>A 1</th>
<th>A 2</th>
<th>A 3</th>
<th>A 4</th>
<th>A 5</th>
<th>A 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angle</td>
<td>0°</td>
<td>-145°</td>
<td>$+170^\circ$</td>
<td>0°</td>
<td>-130°</td>
<td>0°</td>
</tr>
</tbody>
</table>

Fig. 7-1: Transport position

The transport dimensions (Fig. 7-2) for the robot can be noted from the following diagram. The position of the center of mass and the weight vary according to the specific configuration. The specified dimensions refer to the robot without equipment.

Fig. 7-2: Transport dimensions

1. Robot
2. Center of gravity
Transportation

The floor-mounted robot is transported using lifting tackle, and the ceiling-mounted robot by fork lift truck.

<table>
<thead>
<tr>
<th>WARNING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use of unsuitable handling equipment may result in damage to the robot or injury to persons. Only use authorized handling equipment with a sufficient load-bearing capacity. Only transport the robot in the manner specified here.</td>
</tr>
</tbody>
</table>

Transportation by fork lift truck

The ceiling-mounted robot is transported using a fork lift truck (Fig. 7-3). For transport by fork lift truck, the fork slots must be installed. The robot must be in the transport position for ceiling installation.

Transportation using lifting tackle

The floor-mounted robot is transported using lifting tackle (Fig. 7-4). The robot must be in the transport position. One rope of the lifting tackle is attached to an eyebolt that is screwed into the rotating column. A second rope is attached through an opening in the rotating column. All ropes must be long enough and must be routed in such a way that the robot is not damaged. Installed tools and pieces of equipment can cause undesirable shifts in the center of gravity.

The eyebolt must be removed from the rotating column after transportation.

<table>
<thead>
<tr>
<th>WARNING</th>
</tr>
</thead>
<tbody>
<tr>
<td>The robot may tip during transportation. Risk of personal injury and damage to property. If the robot is being transported using lifting tackle, special care must be exercised to prevent it from tipping. Additional safeguarding measures must be taken. It is forbidden to pick up the robot in any other way using a crane!</td>
</tr>
</tbody>
</table>

Fig. 7-3: Transport by fork lift truck

Fig. 7-4: Lifting tackle
<table>
<thead>
<tr>
<th></th>
<th>Description</th>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Lifting tackle</td>
<td>3</td>
<td>Rotating column</td>
</tr>
<tr>
<td>2</td>
<td>Eyebolt</td>
<td>4</td>
<td>Opening</td>
</tr>
</tbody>
</table>
8 KUKA Service

8.1 Requesting support

Introduction

This documentation provides information on operation and operator control, and provides assistance with troubleshooting. For further assistance, please contact your local KUKA subsidiary.

Information

The following information is required for processing a support request:

- Description of the problem, including information about the duration and frequency of the fault
- As comprehensive information as possible about the hardware and software components of the overall system

The following list gives an indication of the information which is relevant in many cases:

- Model and serial number of the kinematic system, e.g. the manipulator
- Model and serial number of the controller
- Model and serial number of the energy supply system
- Designation and version of the system software
- Designations and versions of other software components or modifications
- Diagnostic package KrcDiag:
 - Additionally for KUKA Sunrise: Existing projects including applications
 - For versions of KUKA System Software older than V8: Archive of the software (KrcDiag is not yet available here.)
- Application used
- External axes used

8.2 KUKA Customer Support

Availability

KUKA Customer Support is available in many countries. Please do not hesitate to contact us if you have any questions.

Argentina

Ruben Costantini S.A. (Agency)
Luis Angel Huergo 13 20
Parque Industrial
2400 San Francisco (CBA)
Argentina
Tel. +54 3564 421033
Fax +54 3564 428877
ventas@costantini-sa.com

Australia

KUKA Robotics Australia Pty Ltd
45 Fennell Street
Port Melbourne VIC 3207
Australia
Tel. +61 3 9939 9656
info@kuka-robotics.com.au
www.kuka-robotics.com.au
<table>
<thead>
<tr>
<th>Country</th>
<th>Address</th>
<th>Phone</th>
<th>Fax</th>
<th>Email</th>
<th>Website</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belgium</td>
<td>KUKA Automatisering + Robots N.V.</td>
<td>Tel. +32 11 516160</td>
<td>Fax +32 11 526794</td>
<td>info@kuka.be</td>
<td>www.kuka.be</td>
</tr>
<tr>
<td></td>
<td>Centrum Zuid 1031</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3530 Houthalen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Belgium</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tel. +32 11 516160</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fax +32 11 526794</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>info@kuka.be</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>www.kuka.be</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brazil</td>
<td>KUKA Roboter do Brasil Ltda.</td>
<td>Tel. +55 11 4942-8299</td>
<td>Fax +55 11 2201-7883</td>
<td>info@kuka-roboter.com.br</td>
<td>www.kuka-roboter.com.br</td>
</tr>
<tr>
<td></td>
<td>Travessa Claudio Armando, nº 171</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bloco 5 - Galpões 51/52</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bairro Assunção</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CEP 09861-7630 São Bernardo do Campo - SP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Brazil</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tel. +55 11 4942-8299</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fax +55 11 2201-7883</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>info@kuka-roboter.com.br</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>www.kuka-roboter.com.br</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chile</td>
<td>Robotec S.A. (Agency)</td>
<td>Tel. +56 2 331-5951</td>
<td>Fax +56 2 331-5952</td>
<td>robotec@robotec.cl</td>
<td>www.robotec.cl</td>
</tr>
<tr>
<td></td>
<td>Santiago de Chile</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chile</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tel. +56 2 331-5951</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fax +56 2 331-5952</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>robotec@robotec.cl</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>www.robotec.cl</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>China</td>
<td>KUKA Robotics China Co., Ltd.</td>
<td>Tel. +86 21 5707 2688</td>
<td>Fax +86 21 5707 2603</td>
<td>info@kuka-robotics.cn</td>
<td>www.kuka-robotics.com</td>
</tr>
<tr>
<td></td>
<td>No. 889 Kungang Road</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Xiaokunshan Town</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Songjiang District</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>201614 Shanghai</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P. R. China</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tel. +86 21 5707 2688</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fax +86 21 5707 2603</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>info@kuka-robotics.cn</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>www.kuka-robotics.com</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Germany</td>
<td>KUKA Roboter GmbH</td>
<td>Tel. +49 821 797-4000</td>
<td>Fax +49 821 797-1616</td>
<td>info@kuka-roboter.de</td>
<td>www.kuka-roboter.de</td>
</tr>
<tr>
<td></td>
<td>Zugspitzstr. 140</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>86165 Augsburg</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Germany</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tel. +49 821 797-4000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fax +49 821 797-1616</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>info@kuka-roboter.de</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>www.kuka-roboter.de</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
France
KUKA Automatisme + Robotique SAS
Techvallée
6, Avenue du Parc
91140 Villebon S/Yvette
France
Tel. +33 1 6931660-0
Fax +33 1 6931660-1
commercial@kuka.fr
www.kuka.fr

India
KUKA Robotics India Pvt. Ltd.
Office Number-7, German Centre,
Level 12, Building No. - 9B
DLF Cyber City Phase III
122 002 Gurgaon
Haryana
India
Tel. +91 124 4635774
Fax +91 124 4635773
info@kuka.in
www.kuka.in

Italy
KUKA Roboter Italia S.p.A.
Via Pavia 9/a - int.6
10098 Rivoli (TO)
Italy
Tel. +39 011 959-5013
Fax +39 011 959-5141
kuka@kuka.it
www.kuka.it

Japan
KUKA Robotics Japan K.K.
YBP Technical Center
134 Godo-cho, Hodogaya-ku
Yokohama, Kanagawa
240 0005
Japan
Tel. +81 45 744 7691
Fax +81 45 744 7696
info@kuka.co.jp

Canada
KUKA Robotics Canada Ltd.
6710 Maritz Drive - Unit 4
Mississauga
L5W 0A1
Ontario
Canada
Tel. +1 905 670-8600
Fax +1 905 670-8604
info@kukarobotics.com
www.kuka-robotics.com/canada
Korea
KUKA Robotics Korea Co. Ltd.
RIT Center 306, Gyeonggi Technopark
1271-11 Sa 3-dong, Sangnok-gu
Ansan City, Gyeonggi Do
426-901 Korea
Tel. +82 31 501-1451
Fax +82 31 501-1461
info@kukakorea.com

Malaysia
KUKA Robot Automation (M) Sdn Bhd
South East Asia Regional Office
No. 7, Jalan TPP 6/6
Taman Perindustrian Puchong
47100 Puchong Selangor
Malaysia
Tel. +60 (03) 8063-1792
Fax +60 (03) 8060-7386
info@kuka.com.my

Mexico
KUKA de México S. de R.L. de C.V.
Progreso #8
Col. Centro Industrial Puente de Viges
Tlalnepantla de Baz
54020 Estado de México
Mexico
Tel. +52 55 5203-8407
Fax +52 55 5203-8148
info@kuka.com.mx
www.kuka-robotics.com/mexico

Norway
KUKA Sveiseanlegg + Roboter
Sentrumsvegen 5
2867 Hov
Norway
Tel. +47 61 18 91 30
Fax +47 61 18 62 00
info@kuka.no

Austria
KUKA Roboter CEE GmbH
Gruberstraße 2-4
4020 Linz
Austria
Tel. +43 7 32 78 47 52
Fax +43 7 32 79 38 80
office@kuka-roboter.at
www.kuka.at
Poland
KUKA Roboter Austria GmbH
Spółka z ograniczoną odpowiedzialnością
Oddział w Polsce
Ul. Porcelanowa 10
40-246 Katowice
Poland
Tel. +48 327 30 32 13 or -14
Fax +48 327 30 32 26
ServicePL@kuka-roboter.de

Portugal
KUKA Robots IBÉRICA, S.A.
Rua do Alto da Guerra n° 50
Armazém 04
2910 011 Setúbal
Portugal
Tel. +351 265 729 780
Fax +351 265 729 782
info.portugal@kukapt.com
www.kuka.com

Russia
KUKA Robotics RUS
Werbnaja ul. 8A
107143 Moskau
Russia
Tel. +7 495 781-31-20
Fax +7 495 781-31-19
info@kuka-robotics.ru
www.kuka-robotics.ru

Sweden
KUKA Svetsanläggningar + Robotar AB
A. Odhners gata 15
421 30 Västra Frölunda
Sweden
Tel. +46 31 7266-200
Fax +46 31 7266-201
info@kuka.se

Switzerland
KUKA Roboter Schweiz AG
Industriestr. 9
5432 Neuenhof
Switzerland
Tel. +41 44 74490-90
Fax +41 44 74490-91
info@kuka-roboter.ch
www.kuka-roboter.ch
Spain
KUKA Robots IBÉRICA, S.A.
Pol. Industrial
Torrent de la Pastera
Carrer del Bages s/n
08800 Vilanova i la Geltrú (Barcelona)
Spain
Tel. +34 93 8142-353
Fax +34 93 8142-950
comercial@kukarob.es
www.kuka.es

South Africa
Jendamark Automation LTD (Agency)
76a York Road
North End
6000 Port Elizabeth
South Africa
Tel. +27 41 391 4700
Fax +27 41 373 3869
www.jendamark.co.za

Taiwan
KUKA Robot Automation Taiwan Co., Ltd.
No. 249 Pujong Road
Jungli City, Taoyuan County 320
Taiwan, R. O. C.
Tel. +886 3 4331988
Fax +886 3 4331948
info@kuka.com.tw
www.kuka.com.tw

Thailand
KUKA Robot Automation (M)SdnBhd
Thailand Office
c/o Maccall System Co. Ltd.
49/9-10 Soi Kingkaew 30 Kingkaew Road
Tt. Rachatheva, A. Bangpli
Samutprakarn
10540 Thailand
Tel. +66 2 7502737
Fax +66 2 6612355
atika@ji-net.com
www.kuka-roboter.de

Czech Republic
KUKA Roboter Austria GmbH
Organisation Tschechien und Slowakei
Sezemická 2757/2
193 00 Praha
Horní Počernice
Czech Republic
Tel. +420 22 62 12 27 2
Fax +420 22 62 12 27 0
support@kuka.cz
Index

Numbers
2004/108/EC 47
2006/42/EC 46
2014/30/EC 46
2014/68/EC 47
95/16/EC 46
97/23/EC 47

A
Accessories 9, 35
Ambient temperature, operation 13
Ambient temperature, operation, Safe RDC 13
Ambient temperature, start-up 14
Ambient temperature, storage 13
Ambient temperature, transportation 13
ANSI/RIA R.15.06-2012 47
Applied norms and regulations 46
Arm 9, 10
Automatic mode 44
Axes, number 13
Axis data 14
Axis range 37
Axis range limitation 39
Axis range monitoring 39

B
Base frame 10, 11
Basic data 13
Brake defect 41
Brake release device 40
Braking distance 37

C
CE mark 36
Center of gravity 53
Cleaning work 45
Connecting cables 9, 14, 35
Connecting cables, cable lengths 14
Counterbalancing system 46

D
Danger zone 37
Declaration of conformity 36
Declaration of incorporation 35, 36
Decommissioning 46
Description of the robot system 9
Dimensions, transport 53
Disposal 46
Documentation, industrial robot 5

E
EC declaration of conformity 36
Electrical installations 10, 11
Electromagnetic compatibility (EMC) 47, 48
EMC Directive 36, 46, 47
EN 60204-1 + A1 48
EN 61000-6-2 47
EN 61000-6-4 + A1 48
EN 614-1 + A1 47
EN ISO 10218-1 47
EN ISO 12100 47
EN ISO 13849-1 47
EN ISO 13849-2 47
EN ISO 13850 47
External axes 35, 37

F
Faults 42
Fork lift truck 54
Function test 43

G
General safety measures 41

H
Handling equipment 54
Hazardous substances 46
Hollow-shaft wrist 9, 10
Humidity rating 14

I
Industrial robot 35
Intended use 36
Interface A 6 18
Introduction 5
ISO 9283, repeatability 13

K
KCP 9, 37, 41
Keyboard, external 41
KUKA Customer Support 57
KUKA smartPAD 37

L
Labeling 40
Liability 35
Lifting tackle 54
Linear unit 35
Link arm 9, 10
Loads acting on the mounting base 19
Low Voltage Directive 36

M
Machine data 43
Machine frame mounting with centering 51
Machinery Directive 36, 46
Maintenance 45
Manipulator 35, 37
Manual mode 44
Mechanical axis range limitation 39
Mechanical end stops 39
Mounting base with centering 49
Mounting flange 10, 18
Mounting position 13
Mouse, external 41

Issued: 23.03.2016 Version: Spez KR 5 arc HW V5