Contents

1 Introduction ................................................................. 7
  1.1 Industrial robot documentation ............................................. 7
  1.2 Representation of warnings and notes ......................................... 7
  1.3 Trademarks ..................................................................... 7
  1.4 Terms used ................................................................... 8

2 Purpose ........................................................................ 9
  2.1 Target group ................................................................ 9
  2.2 Intended use ................................................................ 9

3 Product description .......................................................... 11
  3.1 Description of the industrial robot ............................................ 11
  3.2 Overview of the robot controller ............................................... 11
  3.3 Control box .................................................................... 12
    3.3.1 Control PC .............................................................. 12
    3.3.2 Cabinet Control Unit, Small Robot ............................... 13
    3.3.3 Low-voltage power supply unit ......................................... 14
    3.3.4 Batteries ................................................................ 14
    3.3.5 Mains filter .............................................................. 14
    3.4 Drive box (Drive Configuration (DC)) .................................... 14
    3.5 Description of interfaces .................................................... 15
      3.5.1 Control PC interfaces ............................................... 16
        3.5.1.1 Motherboard D3076-K PC interfaces ................. 17
        3.5.1.2 Motherboard D3236-K PC interfaces ................. 18
        3.5.1.3 Motherboard D3445-K PC interfaces ................. 19
    3.6 Cooling ...................................................................... 20

4 Technical data ..................................................................... 21
  4.1 Dimensions .................................................................... 22
  4.2 Cabinet Interface Board, Small Robot ............................... 23
  4.3 Dimensions of the smartPAD holder (optional) ......................... 24
  4.4 Dimensions of handle brackets ............................................. 25
  4.5 Plates and labels ............................................................. 25
  4.6 REACH duty to communicate information acc. to Art. 33 of Regulation (EC) 1907/2006 26

5 Safety ............................................................................ 27
  5.1 General ........................................................................ 27
    5.1.1 Liability ................................................................ 27
    5.1.2 Intended use of the industrial robot .............................. 27
    5.1.3 EC declaration of conformity and declaration of incorporation 28
    5.1.4 Terms used ............................................................ 28
  5.2 Personnel ...................................................................... 30
  5.3 Workspace, safety zone and danger zone ................................. 31
    5.3.1 Determining stopping distances ...................................... 31
  5.4 Triggers for stop reactions .................................................... 32
  5.5 Safety functions ................................................................ 32
    5.5.1 Overview of the safety functions .................................... 32
    5.5.2 Safety controller ....................................................... 33
6.10 PE equipotential bonding ................................................................. 71
6.11 Performance level .............................................................................. 72
6.11.1 PFH values of the safety functions ............................................... 72

7 Transportation ....................................................................................... 75
7.1 Transporting the robot controller ....................................................... 75

8 Start-up and recommissioning .............................................................. 77
8.1 Installing the robot controller ............................................................. 77
8.2 Connecting the connecting cables ...................................................... 77
8.3 Plugging in the KUKA smartPAD ...................................................... 77
8.4 Connecting the equipotential bonding (PE) ....................................... 78
8.5 Connecting the robot controller to the power supply ...................... 78
8.6 Reversing the battery discharge protection measures ...................... 78
8.7 Configuring and connecting connector X11 ..................................... 78
8.8 Switching on the robot controller ..................................................... 79

9 KUKA Service ......................................................................................... 81
9.1 Requesting support ........................................................................... 81
9.2 KUKA Customer Support ................................................................. 81

Index ........................................................................................................ 89
1 Introduction

1.1 Industrial robot documentation

The industrial robot documentation consists of the following parts:

- Documentation for the manipulator
- Documentation for the robot controller
- Operating and programming instructions for the System Software
- Instructions for options and accessories
- Parts catalog on storage medium

Each of these sets of instructions is a separate document.

1.2 Representation of warnings and notes

Safety

These warnings are relevant to safety and must be observed.

- **DANGER**: These warnings mean that it is certain or highly probable that death or severe injuries will occur, if no precautions are taken.
- **WARNING**: These warnings mean that death or severe injuries may occur, if no precautions are taken.
- **CAUTION**: These warnings mean that minor injuries may occur, if no precautions are taken.
- **NOTICE**: These warnings mean that damage to property may occur, if no precautions are taken.

These warnings contain references to safety-relevant information or general safety measures. These warnings do not refer to individual hazards or individual precautionary measures.

This warning draws attention to procedures which serve to prevent or remedy emergencies or malfunctions:

- **SAFETY INSTRUCTIONS**: The following procedure must be followed exactly!

Procedures marked with this warning must be followed exactly.

Notices

These notices serve to make your work easier or contain references to further information.

- **Tip**: Tip to make your work easier or reference to further information.

1.3 Trademarks

- **Windows**: is a trademark of Microsoft Corporation.
- **EtherCAT®**: is a registered trademark and patented technology, licensed by Beckhoff Automation GmbH, Germany.
1.4 Terms used

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIP Safety</td>
<td>Common Industrial Protocol Safety</td>
</tr>
<tr>
<td></td>
<td>CIP Safety is an Ethernet/IP-based safety interface for connecting a safety</td>
</tr>
<tr>
<td></td>
<td>PLC to the robot controller. (PLC = master, robot controller = slave)</td>
</tr>
<tr>
<td>CCU_SR</td>
<td>Cabinet Control Unit Small Robot</td>
</tr>
<tr>
<td>CIB_SR</td>
<td>Cabinet Interface Board Small Robot</td>
</tr>
<tr>
<td>Dual NIC card</td>
<td>Dual network card</td>
</tr>
<tr>
<td>EDS</td>
<td>Electronic Data Storage (memory card)</td>
</tr>
<tr>
<td>EMD</td>
<td>Electronic Mastering Device</td>
</tr>
<tr>
<td>EMC</td>
<td>Electromagnetic compatibility</td>
</tr>
<tr>
<td>KCB</td>
<td>KUKA Controller Bus</td>
</tr>
<tr>
<td>KEB</td>
<td>KUKA Extension Bus</td>
</tr>
<tr>
<td>KEI</td>
<td>KUKA Extension Interface</td>
</tr>
<tr>
<td>KLI</td>
<td>KUKA Line Interface. Connection to higher-level control infrastructure (PLC,</td>
</tr>
<tr>
<td></td>
<td>archiving)</td>
</tr>
<tr>
<td>KOI</td>
<td>KUKA Option Interface</td>
</tr>
<tr>
<td>KONI</td>
<td>KUKA Option Network Interface</td>
</tr>
<tr>
<td>KPC</td>
<td>Control PC</td>
</tr>
<tr>
<td>KPP_SR</td>
<td>KUKA Power Pack Small Robot</td>
</tr>
<tr>
<td>KRL</td>
<td>KUKA robot programming language (KUKA Robot Language)</td>
</tr>
<tr>
<td>KSB</td>
<td>KUKA System Bus. Internal KUKA bus for internal networking of the controllers</td>
</tr>
<tr>
<td></td>
<td>with each other</td>
</tr>
<tr>
<td>KSI</td>
<td>KUKA Service Interface</td>
</tr>
<tr>
<td>KSP_SR</td>
<td>KUKA Servo Pack Small Robot</td>
</tr>
<tr>
<td>KSS</td>
<td>KUKA System Software</td>
</tr>
<tr>
<td>Manipulator</td>
<td>The robot arm and the associated electrical installations</td>
</tr>
<tr>
<td>PMB_SR</td>
<td>Power Management Board Small Robot</td>
</tr>
<tr>
<td>RDC</td>
<td>Resolver Digital Converter</td>
</tr>
<tr>
<td>SATA connections</td>
<td>Data bus for exchanging data between the processor and the hard drive</td>
</tr>
<tr>
<td>USB</td>
<td>Universal Serial Bus. Bus system for connecting additional devices to a</td>
</tr>
<tr>
<td></td>
<td>computer</td>
</tr>
<tr>
<td>EA</td>
<td>External axis (linear unit, Posiflex)</td>
</tr>
</tbody>
</table>
2 Purpose

2.1 Target group

This documentation is aimed at users with the following knowledge and skills:

- Advanced knowledge of electrical and electronic systems
- Advanced knowledge of the robot controller
- Advanced knowledge of the Windows operating system

For optimal use of our products, we recommend that our customers take part in a course of training at KUKA College. Information about the training program can be found at www.kuka.com or can be obtained directly from our subsidiaries.

2.2 Intended use

Use

The robot controller KR C4 compact is intended solely for operating the following components:

- KUKA industrial robots

Misuse

Any use or application deviating from the intended use is deemed to be misuse and is not allowed. This includes e.g.:

- Use as a climbing aid
- Operation outside the permissible operating parameters
- Use in potentially explosive environments
- Use in underground mining
3 Product description

3.1 Description of the industrial robot

The industrial robot consists of the following components:
- Manipulator
- Robot controller
- smartPAD teach pendant
- Connecting cables
- Software
- Options, accessories

![Fig. 3-1: Example of an industrial robot](image)

1 Manipulator
2 Control panel
3 Connecting cable for smartPAD
4 Robot controller
5 Connecting cable, data cable
6 Connecting cable, motor cable
7 Device connection cable

3.2 Overview of the robot controller

The robot controller is used for controlling the following systems:
- KUKA small robots

The robot controller consists of the following components:
- Control PC
- Power unit
- Safety logic
- smartPAD teach pendant
- Connection panel

The robot controller can be installed in a 19" rack.
3.3 Control box

The control box consists of the following components:

Fig. 3-2: Overview of KR C4 compact

1. Control unit (control box)
2. Power unit (drive box)

Fig. 3-3: Overview of control box

3.3.1 Control PC

Components

The control PC (KPC) includes the following components:
3 Product description

- Motherboard
- Processor
- Heat sink
- Memory modules
- Hard drive
- LAN Dual NIC network card (not present on all motherboard variants)
- Optional modules, e.g. field bus cards

### Functions

The control PC (KPC) is responsible for the following functions of the robot controller:

- Graphical user interface
- Program creation, correction, archiving, and maintenance
- Sequence control
- Path planning
- Control of the drive circuit
- Monitoring
- Safety equipment
- Communication with external periphery (other controllers, host computers, PCs, network)

#### 3.3.2 Cabinet Control Unit, Small Robot

### Description

The Cabinet Control Unit, Small Robot (CCU_SR) is the central power distributor and communication interface for all components of the robot controller. The CCU_SR consists of the Cabinet Interface Board, Small Robot (CIB_SR) and the Power Management Board, Small Robot (PMB_SR). All data are transferred via this internal communication interface to the controller for further processing. If the mains voltage fails, the control components continue to be powered by batteries until the position data are saved and the controller has shut down. The charge and quality of the batteries are checked by means of a load test.

The CCU_SR also incorporates sensing, control and switching functions. The output signals are provided as electrically isolated outputs.

### Functions

- Communication interface for the components of the robot controller
- Safe inputs and outputs
  - Contactor activation
  - 4 floating outputs
  - 9 safe inputs
  - Teach pendant plugged in
  - Mastering test
- 6 Fast Measurement inputs for customer applications
- Fan power supply monitoring
- Temperature sensing:
  - Control box internal temperature
- The following components are connected to the KPC via the KUKA Controller Bus:
  - Drive box
  - Resolver digital converter
- The following operator panels and service devices are connected to the control PC via the KUKA System Bus:
  - KUKA Operator Panel Interface
3.3.3 Low-voltage power supply unit

**Description**

The low-voltage power supply unit provides power to the components of the robot controller.

A green LED indicates the operating state of the low-voltage power supply unit.

3.3.4 Batteries

**Description**

In the event of a power failure, or if the power is switched off, the batteries enable the robot controller to be shut down in a controlled manner. The batteries are charged via the CCU and the charge is checked and indicated.

3.3.5 Mains filter

**Description**

The mains filter (interference suppressor filter) suppresses interference voltages on the power cable.

3.4 Drive box (Drive Configuration (DC))

The drive box consists of the following components:

![Fig. 3-4: Overview of drive box](image-url)
3 Product description

Functions

The drive box performs the following functions:

- Generation of the intermediate circuit voltage
- Control of the motors
- Control of the brakes
- Checking of intermediate circuit voltage in braking mode

3.5 Description of interfaces

Overview

The connection panel of the robot controller consists as standard of connections for the following cables:

- Device connection cable
- Motor cable, data cable
- smartPAD cable
- Peripheral cables

The configuration of the connection panel varies according to the customer-specific version and the options required.

Note

The following safety interfaces can be configured in the robot controller:

- Discrete safety interface X11
- Ethernet safety interface X66
  - PROFIsafe KLI or
  - CIP Safety KLI

The discrete safety interface X11 and the Ethernet safety interface X66 cannot be connected and used together. Only one of the safety interfaces can be used at a time.

The configuration of the connection panel varies according to customer requirements and options. In this documentation, the robot controller is described with the maximum configuration.
3.5.1 Control PC interfaces

**Motherboards**  
The following motherboard variants can be installed in the control PC:
- D3076-K
- D3236-K
- D3445-K

![KR C4 compact interfaces](image)
3.5.1.1 Motherboard D3076-K PC interfaces

Overview

Fig. 3-6: Motherboard D3076-K interfaces

1 Field bus cards, slots 1 to 4
2 Cover, field bus cards
3 2 USB 2.0 ports
4 DVI-I
5 4 USB 2.0 ports
6 LAN Onboard – KUKA Option Network Interface

KUKA Deutschland GmbH has assembled, tested and supplied the motherboard with an optimum configuration. No liability will be accepted for modifications to the configuration that have not been carried out by KUKA Deutschland GmbH.

Slot assignment

Fig. 3-7: Motherboard slot assignment

The PC slots can be fitted with the following plug-in cards:

<table>
<thead>
<tr>
<th>Slot</th>
<th>Type</th>
<th>Plug-in card</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PCI</td>
<td>Field bus</td>
</tr>
<tr>
<td>2</td>
<td>PCI</td>
<td>Field bus</td>
</tr>
<tr>
<td>3</td>
<td>PCI</td>
<td>Field bus</td>
</tr>
<tr>
<td>4</td>
<td>PCI</td>
<td>Field bus</td>
</tr>
<tr>
<td>5</td>
<td>PCIe</td>
<td>not available</td>
</tr>
<tr>
<td>6</td>
<td>PCIe</td>
<td>not available</td>
</tr>
<tr>
<td>7</td>
<td>PCIe</td>
<td>LAN Dual NIC network card</td>
</tr>
</tbody>
</table>
3.5.1.2 Motherboard D3236-K PC interfaces

Overview

Fig. 3-8: Motherboard D3236-K interfaces

1 Field bus cards, slots 1 to 2
2 Cover, field bus cards
3 2 USB 3.0 ports
4 DVI-I
5 4 USB 2.0 ports
6 LAN Onboard – KUKA Option Network Interface

KUKA Deutschland GmbH has assembled, tested and supplied the motherboard with an optimum configuration. No liability will be accepted for modifications to the configuration that have not been carried out by KUKA Deutschland GmbH.

Slot assignment

Fig. 3-9: Motherboard slot assignment

The PC slots can be fitted with the following plug-in cards:

<table>
<thead>
<tr>
<th>Slot</th>
<th>Type</th>
<th>Plug-in card</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PCI</td>
<td>Field bus</td>
</tr>
<tr>
<td>2</td>
<td>PCI</td>
<td>Field bus</td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>Not available</td>
</tr>
<tr>
<td>4</td>
<td>-</td>
<td>Not available</td>
</tr>
<tr>
<td>5</td>
<td>-</td>
<td>Not available</td>
</tr>
<tr>
<td>6</td>
<td>-</td>
<td>Not available</td>
</tr>
<tr>
<td>7</td>
<td>-</td>
<td>Not available</td>
</tr>
</tbody>
</table>
3.5.1.3 Motherboard D3445-K PC interfaces

Overview

Fig. 3-10: Motherboard D3445-K interfaces

1. Field bus cards, slots 1 to 2
2. Cover, field bus cards
3. 2 USB 3.0 ports
4. DVI-D
5. Display port
6. 4 USB 2.0 ports
7. LAN Onboard – KUKA Option Network Interface

VGA support is possible via DP on VGA adapter. The user interface of the controller can only be displayed on an external monitor if no active operator control device (smartPAD, VRP) is connected to the controller.

KUKA Deutschland GmbH has assembled, tested and supplied the motherboard with an optimum configuration. No liability will be accepted for modifications to the configuration that have not been carried out by KUKA Deutschland GmbH.

Slot assignment

Fig. 3-11: Slot assignment, motherboard D3445-K

<table>
<thead>
<tr>
<th>Slot</th>
<th>Type</th>
<th>Plug-in card</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PCI</td>
<td>Field bus</td>
</tr>
<tr>
<td>2</td>
<td>PCI</td>
<td>Field bus</td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>not available</td>
</tr>
</tbody>
</table>
### 3.6 Cooling

**Description**

The components of the control and power electronics are cooled with ambient air by 2 fans.

**NOTICE**

Upstream installation of filter mats at the ventilation slits causes an increase in temperature, leading to a reduction in the service life of the installed devices!

---

**Cooling circuit, control box**

![Image of cooling circuit, control box]

**Fig. 3-12: Cooling circuit, control box**

1. Air inlet
2. Fans
3. Air outlet

**Cooling circuit, drive box**

![Image of cooling circuit, drive box]

**Fig. 3-13: Cooling circuit, drive box**

1. Air inlet
2. Fans
3. Air outlet

---

<table>
<thead>
<tr>
<th>Slot</th>
<th>Type</th>
<th>Plug-in card</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>-</td>
<td>not available</td>
</tr>
<tr>
<td>5</td>
<td>PCIe</td>
<td>not available</td>
</tr>
<tr>
<td>6</td>
<td>-</td>
<td>not available</td>
</tr>
<tr>
<td>7</td>
<td>-</td>
<td>not available</td>
</tr>
</tbody>
</table>
## 4 Technical data

### Basic data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cabinet type</td>
<td>19” chassis</td>
</tr>
<tr>
<td>Color</td>
<td>RAL 7016</td>
</tr>
<tr>
<td>Number of axes</td>
<td>max. 6</td>
</tr>
<tr>
<td>Weight</td>
<td>33 kg</td>
</tr>
<tr>
<td>Protection rating</td>
<td>IP 20</td>
</tr>
<tr>
<td>Sound level according to</td>
<td>average: 54 dB (A)</td>
</tr>
<tr>
<td>DIN 45635-1</td>
<td></td>
</tr>
</tbody>
</table>

### Power supply connection

The robot controller may only be connected to grounded-neutral power supply systems.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated supply voltage</td>
<td>200 V - 230 V AC, single-phase, two-phase (with grounded neutral (as symmetrical as possible) between the phases used</td>
</tr>
<tr>
<td>Permissible tolerance of rated supply voltage</td>
<td>Rated supply voltage ±10%</td>
</tr>
<tr>
<td>Mains frequency</td>
<td>50 Hz ± 1 Hz or 60 Hz ± 1 Hz</td>
</tr>
<tr>
<td>Rated power input</td>
<td>2 kVA, see rating plate</td>
</tr>
<tr>
<td>Thermal power dissipation</td>
<td>max. 400 W</td>
</tr>
<tr>
<td>Mains-side fusing</td>
<td>2x 16 A slow-blowing (1(2)x phase; 1x neutral conductor (optional))</td>
</tr>
<tr>
<td>Equipotential bonding</td>
<td>The common neutral point for the equipotential bonding conductors and all protective ground conductors is the reference bus of the power unit</td>
</tr>
</tbody>
</table>

### Environmental conditions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambient temperature during operation</td>
<td>+5 ... 45 °C (278 ... 318 K)</td>
</tr>
<tr>
<td>Ambient temperature during storage/transportation with batteries</td>
<td>-25 ... +40 °C (248 ... 313 K)</td>
</tr>
<tr>
<td>Ambient temperature during storage/transportation without batteries</td>
<td>-25 ... +70 °C (248 ... 343 K)</td>
</tr>
<tr>
<td>Temperature change</td>
<td>max. 1.1 K/min</td>
</tr>
<tr>
<td>Humidity class</td>
<td>3K3 acc. to DIN EN 60721-3-3; 1995</td>
</tr>
<tr>
<td>Altitude</td>
<td>■ up to 1000 m above mean sea level with no reduction in power</td>
</tr>
<tr>
<td></td>
<td>■ 1000 m ... 3000 m above mean sea level with a reduction in power of 5 %/1000 m</td>
</tr>
</tbody>
</table>

**NOTICE** To prevent exhaustive discharge and thus destruction of the batteries, the batteries must be recharged at regular intervals according to the storage temperature. If the storage temperature is +20 °C or lower, the batteries must be recharged every 9 months. If the storage temperature is between +20 °C and +30 °C, the batteries must be recharged every 6 months. If the storage temperature is between +30 °C and +40 °C, the batteries must be recharged every 3 months.
If more severe mechanical stress is expected, the controller must be installed on anti-vibration components.

### Control unit

<table>
<thead>
<tr>
<th>Type of loading</th>
<th>During transportation</th>
<th>During continuous operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>r.m.s. acceleration (sustained oscillation)</td>
<td>0.37 g</td>
<td>0.1 g</td>
</tr>
<tr>
<td>Frequency range (sustained oscillation)</td>
<td></td>
<td>4...120 Hz</td>
</tr>
<tr>
<td>Acceleration (shock in X/Y/Z direction)</td>
<td>10 g</td>
<td>2.5 g</td>
</tr>
<tr>
<td>Waveform/duration (shock in X/Y/Z direction)</td>
<td></td>
<td>Half-sine/11 ms</td>
</tr>
</tbody>
</table>

### Control PC

- **Supply voltage**: DC 27.1 V ± 0.1 V
- **Main processor**: See shipping version
- **DiMM memory modules**: See shipping version (min. 2 GB)
- **Hard drive**: See shipping version

### KUKA smartPAD

- **Supply voltage**: 20 … 27.1 V DC
- **Dimensions (WxHxD)**: approx. 24x29x5 cm³
- **Display**: Touch-sensitive color display 600 x 800 pixels
- **Display size**: 8.4”
- **Interfaces**: USB
- **Weight**: 1.1 kg
- **Protection rating (without USB stick and USB connection closed with a plug)**: IP 54

### Cable lengths

For cable designations, standard lengths and optional lengths, please refer to the operating instructions or assembly instructions of the manipulator and/or the assembly and operating instructions for KR C4 external cabling for robot controllers.

- **Warning**: When using smartPAD cable extensions, only two extensions may be used. An overall cable length of 50 m must not be exceeded.
- **Warning**: The difference in the cable lengths between the individual channels of the RDC box must not exceed 10 m.

### 4.1 Dimensions

The dimensions of the robot controller are indicated in the diagram (>>> Fig. 4-1).
4.2 Cabinet Interface Board, Small Robot

CIB_SR outputs

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating voltage, power contacts</td>
<td>≤ 30 V</td>
</tr>
<tr>
<td>Current via power contact</td>
<td>min. 10 mA, &lt; 750 mA</td>
</tr>
<tr>
<td>Cable lengths (connection of actuators)</td>
<td>&lt; 50 m cable lengths, &lt; 100 m wire length (outgoing and incoming lines)</td>
</tr>
<tr>
<td>Cable cross-section (connection of actuators)</td>
<td>≥ 1 mm²</td>
</tr>
<tr>
<td>Switching cycles CIB_SR</td>
<td>Service life: 20 years, &lt; 100,000 (corresponds to 13 switching cycles per day)</td>
</tr>
</tbody>
</table>

The module must be exchanged when the number of switching cycles is exceeded.
### CIB_SR inputs

<table>
<thead>
<tr>
<th>Switching level of the inputs</th>
<th>The state for the inputs is not defined for the voltage range from 5 V to 11 V (transition range). Either the ON state or the OFF state is set. OFF state for the voltage range from -3 V to 5 V (OFF range). ON state for the voltage range from 11 V to 30 V (ON range).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Load current with 24 V supply voltage</td>
<td>&gt; 10 mA</td>
</tr>
<tr>
<td>Load current with 18 V supply voltage</td>
<td>&gt; 6.5 mA</td>
</tr>
<tr>
<td>Max. load current</td>
<td>&lt; 15 mA</td>
</tr>
<tr>
<td>Cable length, terminal - sensor</td>
<td>&lt; 50 m, or &lt; 100 m wire length (outgoing and incoming lines)</td>
</tr>
<tr>
<td>Cable cross-section, test output - input connection</td>
<td>&gt; 0.5 mm²</td>
</tr>
<tr>
<td>Capacitive load for the test outputs per channel</td>
<td>&lt; 200 nF</td>
</tr>
<tr>
<td>Resistive load for the test outputs per channel</td>
<td>&lt; 33 Ω</td>
</tr>
</tbody>
</table>

Test outputs A and B are sustained short-circuit proof. The specified currents flow via the contact element connected to the input. This must be rated for the maximum current of 15 mA.

### 4.3 Dimensions of the smartPAD holder (optional)

The diagram (Fig. 4-2) shows the dimensions and drilling locations for mounting on the safety fence.

![Dimensions and drilling locations for smartPAD holder](image)

**Fig. 4-2: Dimensions and drilling locations for smartPAD holder**
4.4 Dimensions of handle brackets

![Dimensions of handle brackets](image)

**Fig. 4-3: Dimensions of handle brackets**

4.5 Plates and labels

**Overview**

The following plates and labels are attached to the robot controller. They must not be removed or rendered illegible. Illegible plates and labels must be replaced.

**Designations**

![Robot controller rating plate](image)

**Fig. 4-4: Plates and labels**

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Robot controller rating plate</td>
</tr>
</tbody>
</table>
4.6  **REACH duty to communicate information acc. to Art. 33 of Regulation (EC) 1907/2006**

On the basis of the information provided by our suppliers, the following components of this product contain substances included on the Candidate List of Substances of Very High Concern (SVHCs) in a concentration exceeding 0.1 percent by mass. None of these substances are released under normal and reasonably foreseeable conditions of use.

<table>
<thead>
<tr>
<th>Product</th>
<th>REACH candidate/SVHC substance name</th>
<th>CAS number</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR 2032 button cell</td>
<td>1,2-Dimethoxyethane; Ethylene glycol dimethyl ether (EGDME)</td>
<td>110-71-4</td>
</tr>
</tbody>
</table>
5 Safety

5.1 General

5.1.1 Liability

The device described in this document is either an industrial robot or a component thereof.

Components of the industrial robot:

- Manipulator
- Robot controller
- Teach pendant
- Connecting cables
- External axes (optional)
  - e.g. linear unit, turn-tilt table, positioner
- Software
- Options, accessories

The industrial robot is built using state-of-the-art technology and in accordance with the recognized safety rules. Nevertheless, misuse of the industrial robot may constitute a risk to life and limb or cause damage to the industrial robot and to other material property.

The industrial robot may only be used in perfect technical condition in accordance with its designated use and only by safety-conscious persons who are fully aware of the risks involved in its operation. Use of the industrial robot is subject to compliance with this document and with the declaration of incorporation supplied together with the industrial robot. Any functional disorders affecting safety must be rectified immediately.

Safety information

Information about safety may not be construed against KUKA Deutschland GmbH. Even if all safety instructions are followed, this is not a guarantee that the industrial robot will not cause personal injuries or material damage.

No modifications may be carried out to the industrial robot without the authorization of KUKA Deutschland GmbH. Additional components (tools, software, etc.), not supplied by KUKA Deutschland GmbH, may be integrated into the industrial robot. The user is liable for any damage these components may cause to the industrial robot or to other material property.

In addition to the Safety chapter, this document contains further safety instructions. These must also be observed.

5.1.2 Intended use of the industrial robot

The industrial robot is intended exclusively for the use designated in the “Purpose” chapter of the operating instructions or assembly instructions.

Any use or application deviating from the intended use is deemed to be misuse and is not allowed. The manufacturer is not liable for any damage resulting from such misuse. The risk lies entirely with the user.

Operation of the industrial robot in accordance with its intended use also requires compliance with the operating and assembly instructions for the individual components, with particular reference to the maintenance specifications.

Misuse

Any use or application deviating from the intended use is deemed to be misuse and is not allowed. This includes e.g.:
5.1.3 EC declaration of conformity and declaration of incorporation

The industrial robot constitutes partly completed machinery as defined by the EC Machinery Directive. The industrial robot may only be put into operation if the following preconditions are met:

- The industrial robot is integrated into a complete system.
- The industrial robot, together with other machinery, constitutes a complete system.
- All safety functions and safeguards required for operation in the complete machine as defined by the EC Machinery Directive have been added to the industrial robot.
- The complete system complies with the EC Machinery Directive. This has been confirmed by means of a conformity assessment procedure.

**EC declaration of conformity**

The system integrator must issue an EC declaration of conformity for the complete system in accordance with the Machinery Directive. The EC declaration of conformity forms the basis for the CE mark for the system. The industrial robot must always be operated in accordance with the applicable national laws, regulations and standards.

The robot controller has a CE mark in accordance with the EMC Directive and the Low Voltage Directive.

**Declaration of incorporation**

The partly completed machinery is supplied with a declaration of incorporation in accordance with Annex II B of the EC Machinery Directive 2006/42/EC. The assembly instructions and a list of essential requirements complied with in accordance with Annex I are integral parts of this declaration of incorporation.

The declaration of incorporation declares that the start-up of the partly completed machinery is not allowed until the partly completed machinery has been incorporated into machinery, or has been assembled with other parts to form machinery, and this machinery complies with the terms of the EC Machinery Directive, and the EC declaration of conformity is present in accordance with Annex II A.

5.1.4 Terms used

STOP 0, STOP 1 and STOP 2 are the stop definitions according to EN 60204-1:2006.

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Axis range</td>
<td>Range of each axis, in degrees or millimeters, within which it may move. The axis range must be defined for each axis.</td>
</tr>
<tr>
<td>Stopping distance</td>
<td>Stopping distance = reaction distance + braking distance. The stopping distance is part of the danger zone.</td>
</tr>
<tr>
<td>Workspace</td>
<td>Area within which the robot may move. The workspace is derived from the individual axis ranges.</td>
</tr>
<tr>
<td>User</td>
<td>The user of the industrial robot can be the management, employer or delegated person responsible for use of the industrial robot.</td>
</tr>
<tr>
<td>Danger zone</td>
<td>The danger zone consists of the workspace and the stopping distances of the manipulator and external axes (optional).</td>
</tr>
<tr>
<td>Term</td>
<td>Description</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Service life</td>
<td>The service life of a safety-relevant component begins at the time of delivery of the component to the customer. The service life is not affected by whether the component is used or not, as safety-relevant components are also subject to aging during storage.</td>
</tr>
<tr>
<td>KUKA smartPAD see “smartPAD”</td>
<td></td>
</tr>
<tr>
<td>Manipulator</td>
<td>The robot arm and the associated electrical installations</td>
</tr>
<tr>
<td>Safety zone</td>
<td>The safety zone is situated outside the danger zone.</td>
</tr>
<tr>
<td>Safe operational stop</td>
<td>The safe operational stop is a standstill monitoring function. It does not stop the robot motion, but monitors whether the robot axes are stationary. If these are moved during the safe operational stop, a safety stop STOP 0 is triggered. The safe operational stop can also be triggered externally. When a safe operational stop is triggered, the robot controller sets an output to the field bus. The output is set even if not all the axes were stationary at the time of triggering, thereby causing a safety stop STOP 0 to be triggered.</td>
</tr>
<tr>
<td>Safety STOP 0</td>
<td>A stop that is triggered and executed by the safety controller. The safety controller immediately switches off the drives and the power supply to the brakes.</td>
</tr>
<tr>
<td>Note:</td>
<td>This stop is called safety STOP 0 in this document.</td>
</tr>
<tr>
<td>Safety STOP 1</td>
<td>A stop that is triggered and monitored by the safety controller. The braking operation is carried out by the non-safety-oriented section of the robot controller and monitored by the safety controller. As soon as the manipulator has stopped, the safety controller deactivates the drives and the power supply of the brakes. When a safety STOP 1 is triggered, the robot controller sets an output to the field bus. The safety STOP 1 can also be triggered externally.</td>
</tr>
<tr>
<td>Note:</td>
<td>This stop is called safety STOP 1 in this document.</td>
</tr>
<tr>
<td>Safety STOP 2</td>
<td>A stop that is triggered and monitored by the safety controller. The braking operation is carried out by the non-safety-oriented section of the robot controller and monitored by the safety controller. The drives remain activated and the brakes released. As soon as the manipulator is at a standstill, a safe operational stop is triggered. When a safety STOP 2 is triggered, the robot controller sets an output to the field bus. The safety STOP 2 can also be triggered externally.</td>
</tr>
<tr>
<td>Note:</td>
<td>This stop is called safety STOP 2 in this document.</td>
</tr>
<tr>
<td>Safety options</td>
<td>Generic term for options which make it possible to configure additional safe monitoring functions in addition to the standard safety functions. Example: SafeOperation</td>
</tr>
<tr>
<td>smartPAD</td>
<td>Programming device for the robot controller</td>
</tr>
<tr>
<td></td>
<td>The smartPAD has all the operator control and display functions required for operating and programming the industrial robot.</td>
</tr>
<tr>
<td>Stop category 0</td>
<td>The drives are deactivated immediately and the brakes are applied. The manipulator and any external axes (optional) perform path-oriented braking.</td>
</tr>
<tr>
<td>Note:</td>
<td>This stop category is called STOP 0 in this document.</td>
</tr>
</tbody>
</table>
5.2 Personnel

The following persons or groups of persons are defined for the industrial robot:

- User
- Personnel

All persons working with the industrial robot must have read and understood the industrial robot documentation, including the safety chapter.

User

- The user must observe the labor laws and regulations. This includes e.g.:
  - The user must comply with his monitoring obligations.
  - The user must carry out briefing at defined intervals.

Personnel

Personnel must be instructed, before any work is commenced, in the type of work involved and what exactly it entails as well as any hazards which may exist. Instruction must be carried out regularly. Instruction is also required after particular incidents or technical modifications.

Personnel includes:

- System integrator
- Operators, subdivided into:
  - Start-up, maintenance and service personnel
  - Operating personnel
5 Safety

System integrator

The industrial robot is safely integrated into a complete system by the system integrator.

The system integrator is responsible for the following tasks:

- Installing the industrial robot
- Connecting the industrial robot
- Performing risk assessment
- Implementing the required safety functions and safeguards
- Issuing the EC declaration of conformity
- Attaching the CE mark
- Creating the operating instructions for the system

Operators

The operator must meet the following preconditions:

- The operator must be trained for the work to be carried out.
- Work on the system must only be carried out by qualified personnel. These are people who, due to their specialist training, knowledge and experience, and their familiarization with the relevant standards, are able to assess the work to be carried out and detect any potential hazards.

Operators

5.3 Workspace, safety zone and danger zone

Workspaces are to be restricted to the necessary minimum size. A workspace must be safeguarded using appropriate safeguards.

The safeguards (e.g. safety gate) must be situated inside the safety zone. In the case of a stop, the manipulator and external axes (optional) are braked and come to a stop within the danger zone.

The danger zone consists of the workspace and the stopping distances of the manipulator and external axes (optional). It must be safeguarded by means of physical safeguards to prevent danger to persons or the risk of material damage.

5.3.1 Determining stopping distances

The system integrator’s risk assessment may indicate that the stopping distances must be determined for an application. In order to determine the stopping distances, the system integrator must identify the safety-relevant points on the programmed path.

When determining the stopping distances, the robot must be moved with the tool and loads which are also used in the application. The robot must be at operating temperature. This is the case after approx. 1 h in normal operation.

During execution of the application, the robot must be stopped at the point from which the stopping distance is to be calculated. This process must be repeated several times with a safety stop 0 and a safety stop 1. The least favorable stopping distance is decisive.
A safety stop 0 can be triggered by a safe operational stop via the safety interface, for example. If a safety option is installed, it can be triggered, for instance, by a space violation (e.g. the robot exceeds the limit of an activated workspace in Automatic mode).

A safety stop 1 can be triggered by pressing the EMERGENCY STOP device on the smartPAD, for example.

### 5.4 Triggers for stop reactions

Stop reactions of the industrial robot are triggered in response to operator actions or as a reaction to monitoring functions and error messages. The following table shows the different stop reactions according to the operating mode that has been set.

<table>
<thead>
<tr>
<th>Trigger</th>
<th>T1, T2</th>
<th>AUT, AUT EXT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start key released</td>
<td>STOP 2</td>
<td>-</td>
</tr>
<tr>
<td>STOP key pressed</td>
<td>STOP 2</td>
<td></td>
</tr>
<tr>
<td>Drives OFF</td>
<td>STOP 1</td>
<td></td>
</tr>
<tr>
<td>$MOVE_ENABLE input drops out</td>
<td>STOP 2</td>
<td></td>
</tr>
<tr>
<td>Power switched off via main switch or power failure</td>
<td>STOP 0</td>
<td></td>
</tr>
<tr>
<td>Internal error in non-safety-oriented part of the robot controller</td>
<td>STOP 0 or STOP 1</td>
<td>(dependent on the cause of the error)</td>
</tr>
<tr>
<td>Operating mode changed during operation</td>
<td>Safety stop 2</td>
<td></td>
</tr>
<tr>
<td>Safety gate opened (operator safety)</td>
<td>-</td>
<td>Safety stop 1</td>
</tr>
<tr>
<td>Enabling switch released</td>
<td>Safety stop 2</td>
<td>-</td>
</tr>
<tr>
<td>Enabling switch pressed fully down or error</td>
<td>Safety stop 1</td>
<td>-</td>
</tr>
<tr>
<td>E-STOP pressed</td>
<td>Safety stop 1</td>
<td></td>
</tr>
<tr>
<td>Error in safety controller or periphery of the safety controller</td>
<td>Safety stop 0</td>
<td></td>
</tr>
</tbody>
</table>

### 5.5 Safety functions

#### 5.5.1 Overview of the safety functions

The following safety functions are present in the industrial robot:

- Selecting the operating mode
- Operator safety (= connection for the monitoring of physical safeguards)
- EMERGENCY STOP device
- Enabling device
- External safe operational stop
- External safety stop 1
- External safety stop 2
- Velocity monitoring in T1

The safety functions of the industrial robot meet the following requirements:
Category 3 and Performance Level d in accordance with EN ISO 13849-1

The requirements are only met on the following condition, however:

- The EMERGENCY STOP device is pressed at least once every 12 months.

The following components are involved in the safety functions:

- Safety controller in the control PC
- KUKA smartPAD
- Cabinet Control Unit (CCU)
- Resolver Digital Converter (RDC)
- KUKA Power Pack (KPP)
- KUKA Servo Pack (KSP)
- Safety Interface Board (SIB) (if used)

There are also interfaces to components outside the industrial robot and to other robot controllers.

**Danger**

In the absence of operational safety functions and safeguards, the industrial robot can cause personal injury or material damage. If safety functions or safeguards are dismantled or deactivated, the industrial robot may not be operated.

During system planning, the safety functions of the overall system must also be planned and designed. The industrial robot must be integrated into this safety system of the overall system.

### 5.5.2 Safety controller

The safety controller is a unit inside the control PC. It links safety-relevant signals and safety-relevant monitoring functions.

Safety controller tasks:

- Switching off the drives; applying the brakes
- Monitoring the braking ramp
- Standstill monitoring (after the stop)
- Velocity monitoring in T1
- Evaluation of safety-relevant signals
- Setting of safety-oriented outputs

### 5.5.3 Selecting the operating mode

**Operating modes**

The industrial robot can be operated in the following modes:

- Manual Reduced Velocity (T1)
- Manual High Velocity (T2)
- Automatic (AUT)
- Automatic External (AUT EXT)

Do not change the operating mode while a program is running. If the operating mode is changed during program execution, the industrial robot is stopped with a safety stop 2.
Mode selector switch

The user can change the operating mode via the connection manager. The connection manager is a view that is called by means of the mode selector switch on the smartPAD.

The mode selector switch may be one of the following variants:

- **With key**
  It is only possible to change operating mode if the key is inserted.

- **Without key**

![WARNING]

If the smartPAD is fitted with a switch without a key:
An additional device must be present to ensure that the relevant functions cannot be executed by all users, but only by a restricted group of people.
The device itself must not trigger motions of the industrial robot or other hazards. If this device is missing, death or severe injuries may result.

The system integrator is responsible for ensuring that such a device is implemented.

5.5.4 “Operator safety” signal

The “operator safety” signal is used for monitoring physical safeguards, e.g. safety gates. Automatic operation is not possible without this signal. In the event of a loss of signal during automatic operation (e.g. safety gate is opened), the manipulator stops with a safety stop 1.

Operator safety is not active in modes T1 (Manual Reduced Velocity) and T2 (Manual High Velocity).

<table>
<thead>
<tr>
<th>Operating mode</th>
<th>Use</th>
<th>Velocities</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>For test operation, programming and teaching</td>
<td>Program verification: Programmed velocity, maximum 250 mm/s. Jog mode: Jog velocity, maximum 250 mm/s.</td>
</tr>
<tr>
<td>T2</td>
<td>For test operation</td>
<td>Program verification: Programmed velocity. Jog mode: Not possible.</td>
</tr>
<tr>
<td>AUT</td>
<td>For industrial robots without higher-level controllers</td>
<td>Program operation: Programmed velocity. Jog mode: Not possible.</td>
</tr>
<tr>
<td>AUT EXT</td>
<td>For industrial robots with higher-level controllers, e.g. PLC</td>
<td>Program operation: Programmed velocity. Jog mode: Not possible.</td>
</tr>
</tbody>
</table>
5.5.5 EMERGENCY STOP device

The EMERGENCY STOP device for the industrial robot is the EMERGENCY STOP device on the smartPAD. The device must be pressed in the event of a hazardous situation or emergency.

Reactions of the industrial robot if the EMERGENCY STOP device is pressed:

- The manipulator and any external axes (optional) are stopped with a safety stop 1.

Before operation can be resumed, the EMERGENCY STOP device must be turned to release it.

5.5.6 Logging off from the higher-level safety controller

If the robot controller is connected to a higher-level safety controller, this connection will inevitably be terminated in the following cases:

- Switching off the voltage via the main switch of the robot
- Or power failure
- Shutdown of the robot controller via the smartHMI
- Activation of a WorkVisual project in WorkVisual or directly on the robot controller
- Changes to **Start-up > Network configuration**
- Changes to **Configuration > Safety configuration**
- **I/O drivers > Reconfigure**
- Restoration of an archive

Effect of the interruption:

- If a discrete safety interface is used, this triggers an EMERGENCY STOP for the overall system.
If the Ethernet interface is used, the KUKA safety controller generates a signal that prevents the higher-level controller from triggering an EMERGENCY STOP for the overall system.

If the Ethernet safety interface is used: In his risk assessment, the system integrator must take into consideration whether the fact that switching off the robot controller does not trigger an EMERGENCY STOP of the overall system could constitute a hazard and, if so, how this hazard can be countered. Failure to take this into consideration may result in death, injuries or damage to property.

<table>
<thead>
<tr>
<th>WARNING</th>
</tr>
</thead>
<tbody>
<tr>
<td>If a robot controller is switched off, the E-STOP device on the smartPAD is no longer functional. The user is responsible for ensuring that the smartPAD is either covered or removed from the system. This serves to prevent operational and non-operational EMERGENCY STOP devices from becoming interchanged. Failure to observe this precaution may result in death, injuries or damage to property.</td>
</tr>
</tbody>
</table>

5.5.7 External EMERGENCY STOP device

Every operator station that can initiate a robot motion or other potentially hazardous situation must be equipped with an EMERGENCY STOP device. The system integrator is responsible for ensuring this.

There must always be at least one external EMERGENCY STOP device installed. This ensures that an EMERGENCY STOP device is available even when the smartPAD is disconnected.

External EMERGENCY STOP devices are connected via the customer interface. External EMERGENCY STOP devices are not included in the scope of supply of the industrial robot.

5.5.8 Enabling device

The enabling devices of the industrial robot are the enabling switches on the smartPAD.

There are 3 enabling switches installed on the smartPAD. The enabling switches have 3 positions:
- Not pressed
- Center position
- Panic position

In the test modes, the manipulator can only be moved if one of the enabling switches is held in the central position.

- Releasing the enabling switch triggers a safety stop 2.
- Pressing the enabling switch down fully (panic position) triggers a safety stop 1.
- It is possible to hold 2 enabling switches in the center position simultaneously for up to 15 seconds. This makes it possible to adjust grip from one enabling switch to another one. If 2 enabling switches are held simultaneously in the center position for longer than 15 seconds, this triggers a safety stop 1.

If an enabling switch malfunctions (e.g. jams in the center position), the industrial robot can be stopped using the following methods:
- Press the enabling switch down fully.
- Actuate the EMERGENCY STOP device.
- Release the Start key.

**WARNING**
The enabling switches must not be held down by adhesive tape or other means or tampered with in any other way. Death, injuries or damage to property may result.

### 5.5.9 External enabling device

External enabling devices are required if it is necessary for more than one person to be in the danger zone of the industrial robot.

External enabling devices are not included in the scope of supply of the industrial robot.

> Which interface can be used for connecting external enabling devices is described in the "Planning" chapter of the robot controller operating instructions and assembly instructions.

### 5.5.10 External safe operational stop

The safe operational stop can be triggered via an input on the customer interface. The state is maintained as long as the external signal is FALSE. If the external signal is TRUE, the manipulator can be moved again. No acknowledgement is required.

### 5.5.11 External safety stop 1 and external safety stop 2

Safety stop 1 and safety stop 2 can be triggered via an input on the customer interface. The state is maintained as long as the external signal is FALSE. If the external signal is TRUE, the manipulator can be moved again. No acknowledgement is required.

If interface X11 is selected as the customer interface, only the signal Safety stop 2 is available.

### 5.5.12 Velocity monitoring in T1

The velocity at the mounting flange is monitored in T1 mode. If the velocity exceeds 250 mm/s, a safety stop 0 is triggered.

### 5.6 Additional protective equipment

#### 5.6.1 Jog mode

In the operating modes T1 (Manual Reduced Velocity) and T2 (Manual High Velocity), the robot controller can only execute programs in jog mode. This means that it is necessary to hold down an enabling switch and the Start key in order to execute a program.

- Releasing the enabling switch triggers a safety stop 2.
- Pressing the enabling switch down fully (panic position) triggers a safety stop 1.
- Releasing the Start key triggers a STOP 2.
5.6.2 Software limit switches

The axis ranges of all manipulator and positioner axes are limited by means of adjustable software limit switches. These software limit switches only serve as machine protection and must be adjusted in such a way that the manipulator/positioner cannot hit the mechanical end stops.

The software limit switches are set during commissioning of an industrial robot.

Further information is contained in the operating and programming instructions.

5.6.3 Mechanical end stops

Depending on the robot variant, the axis ranges of the main and wrist axes of the manipulator are partially limited by mechanical end stops.

Additional mechanical end stops can be installed on the external axes.

**WARNING** If the manipulator or an external axis hits an obstruction or a mechanical end stop or mechanical axis limitation, the manipulator can no longer be operated safely. The manipulator must be taken out of operation and KUKA Deutschland GmbH must be consulted before it is put back into operation.

5.6.4 Mechanical axis limitation (optional)

Some manipulators can be fitted with mechanical axis limitation systems in axes A1 to A3. The axis limitation systems restrict the working range to the required minimum. This increases personal safety and protection of the system.

In the case of manipulators that are not designed to be fitted with mechanical axis limitation, the workspace must be laid out in such a way that there is no danger to persons or material property, even in the absence of mechanical axis limitation.

If this is not possible, the workspace must be limited by means of photoelectric barriers, photoelectric curtains or obstacles on the system side. There must be no shearing or crushing hazards at the loading and transfer areas.

This option is not available for all robot models. Information on specific robot models can be obtained from KUKA Deutschland GmbH.

5.6.5 Options for moving the manipulator without drive energy

The system user is responsible for ensuring that the training of personnel with regard to the response to emergencies or exceptional situations also includes how the manipulator can be moved without drive energy.

**Description**

The following options are available for moving the manipulator without drive energy after an accident or malfunction:

- **Release device (optional)**

  The release device can be used for the main axis drive motors and, depending on the robot variant, also for the wrist axis drive motors.
- **Brake release device (option)**
  The brake release device is designed for robot variants whose motors are not freely accessible.

- **Moving the wrist axes directly by hand**
  There is no release device available for the wrist axes of variants in the low payload category. This is not necessary because the wrist axes can be moved directly by hand.

---

**NOTICE**
Moving the manipulator without drive energy can damage the motor brakes of the axes concerned. The motor must be replaced if the brake has been damaged. The manipulator may therefore be moved without drive energy only in emergencies, e.g. for rescuing persons.

---

### 5.6.6 Labeling on the industrial robot

All plates, labels, symbols and marks constitute safety-relevant parts of the industrial robot. They must not be modified or removed.

Labeling on the industrial robot consists of:

- Identification plates
- Warning signs
- Safety symbols
- Designation labels
- Cable markings
- Rating plates

---

**Information**

Information about the options available for the various robot models and about how to use them can be found in the assembly and operating instructions for the robot or requested from KUKA Deutschland GmbH.

---

### 5.6.7 External safeguards

The access of persons to the danger zone of the industrial robot must be prevented by means of safeguards. It is the responsibility of the system integrator to ensure this.

Physical safeguards must meet the following requirements:

- They meet the requirements of EN ISO 14120.
- They prevent access of persons to the danger zone and cannot be easily circumvented.
- They are sufficiently fastened and can withstand all forces that are likely to occur in the course of operation, whether from inside or outside the enclosure.
- They do not, themselves, represent a hazard or potential hazard.
- Prescribed clearances, e.g. to danger zones, are adhered to.

Safety gates (maintenance gates) must meet the following requirements:

- They are reduced to an absolute minimum.

---

**Further information**

Further information is contained in the technical data of the operating instructions or assembly instructions of the components of the industrial robot.
The interlocks (e.g. safety gate switches) are linked to the operator safety input of the robot controller via safety gate switching devices or safety PLC.

Switching devices, switches and the type of switching conform to the requirements of Performance Level d and category 3 according to EN ISO 13849-1.

Depending on the risk situation: the safety gate is additionally safeguarded by means of a locking mechanism that only allows the gate to be opened if the manipulator is safely at a standstill.

The button for acknowledging the safety gate is located outside the space limited by the safeguards.

Further information is contained in the corresponding standards and regulations. These also include EN ISO 14120.

Other safety equipment

Other safety equipment must be integrated into the system in accordance with the corresponding standards and regulations.

5.7 Overview of operating modes and safety functions

The following table indicates the operating modes in which the safety functions are active.

<table>
<thead>
<tr>
<th>Safety functions</th>
<th>T1</th>
<th>T2</th>
<th>AUT</th>
<th>AUT EXT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operator safety</td>
<td></td>
<td></td>
<td>Active</td>
<td>Active</td>
</tr>
<tr>
<td>EMERGENCY STOP device</td>
<td>Active</td>
<td>Active</td>
<td>Active</td>
<td>Active</td>
</tr>
<tr>
<td>Enabling device</td>
<td>Active</td>
<td>Active</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Reduced velocity during program verification</td>
<td>Active</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Jog mode</td>
<td>Active</td>
<td>Active</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Software limit switches</td>
<td>Active</td>
<td>Active</td>
<td>Active</td>
<td>Active</td>
</tr>
</tbody>
</table>

5.8 Safety measures

5.8.1 General safety measures

The industrial robot may only be used in perfect technical condition in accordance with its intended use and only by safety-conscious persons. Operator errors can result in personal injury and damage to property.

It is important to be prepared for possible movements of the industrial robot even after the robot controller has been switched off and locked out. Incorrect installation (e.g. overload) or mechanical defects (e.g. brake defect) can cause the manipulator or external axes to sag. If work is to be carried out on a switched-off industrial robot, the manipulator and external axes must first be moved into a position in which they are unable to move on their own, whether the payload is mounted or not. If this is not possible, the manipulator and external axes must be secured by appropriate means.

In the absence of operational safety functions and safeguards, the industrial robot can cause personal injury or material damage. If safety functions or safeguards are dismantled or deactivated, the industrial robot may not be operated.
smartPAD

The user must ensure that the industrial robot is only operated with the smartPAD by authorized persons.

If more than one smartPAD is used in the overall system, it must be ensured that it is clearly recognizable which smartPAD is connected to which industrial robot. They must not be interchanged.

**DANGER**

Standing underneath the robot arm can cause death or injuries. For this reason, standing underneath the robot arm is prohibited!

**CAUTION**

The motors reach temperatures during operation which can cause burns to the skin. Contact must be avoided. Appropriate safety precautions must be taken, e.g. protective gloves must be worn.

**WARNING**

The operator must ensure that decoupled smartPADs are immediately removed from the system and stored out of sight and reach of personnel working on the industrial robot. This serves to prevent operational and non-operational EMERGENCY STOP devices from becoming interchanged.

Failure to observe this precaution may result in death, severe injuries or considerable damage to property.

Modifications

After modifications to the industrial robot, checks must be carried out to ensure the required safety level. The valid national or regional work safety regulations must be observed for this check. The correct functioning of all safety functions must also be tested.

New or modified programs must always be tested first in Manual Reduced Velocity mode (T1).

After modifications to the industrial robot, existing programs must always be tested first in Manual Reduced Velocity mode (T1). This applies to all components of the industrial robot and includes e.g. modifications of the external axes or to the software and configuration settings.

Faults

The following tasks must be carried out in the case of faults in the industrial robot:

- Switch off the robot controller and secure it (e.g. with a padlock) to prevent unauthorized persons from switching it on again.
- Indicate the fault by means of a label with a corresponding warning (tag-out).
- Keep a record of the faults.
- Eliminate the fault and carry out a function test.

5.8.2 Transportation

Manipulator

The prescribed transport position of the manipulator must be observed. Transportation must be carried out in accordance with the operating instructions or assembly instructions of the robot.

Avoid vibrations and impacts during transportation in order to prevent damage to the manipulator.

Robot controller

The prescribed transport position of the robot controller must be observed. Transportation must be carried out in accordance with the operating instructions or assembly instructions of the robot controller.
Avoid vibrations and impacts during transportation in order to prevent damage to the robot controller.

**External axis (optional)**

The prescribed transport position of the external axis (e.g. KUKA linear unit, turn-tilt table, positioner) must be observed. Transportation must be carried out in accordance with the operating instructions or assembly instructions of the external axis.

### 5.8.3 Start-up and recommissioning

Before starting up systems and devices for the first time, a check must be carried out to ensure that the systems and devices are complete and operational, that they can be operated safely and that any damage is detected.

The valid national or regional work safety regulations must be observed for this check. The correct functioning of all safety functions must also be tested.

![Warning]

The passwords for the user groups must be changed in the KUKA System Software before start-up. The passwords must only be communicated to authorized personnel.

**WARNING** The robot controller is preconfigured for the specific industrial robot. If cables are interchanged, the manipulator and the external axes (optional) may receive incorrect data and can thus cause personal injury or material damage. If a system consists of more than one manipulator, always connect the connecting cables to the manipulators and their corresponding robot controllers.

**WARNING** If additional components (e.g. cables), which are not part of the scope of supply of KUKA Deutschland GmbH, are integrated into the industrial robot, the user is responsible for ensuring that these components do not adversely affect or disable safety functions.

**NOTICE** If the internal cabinet temperature of the robot controller differs greatly from the ambient temperature, condensation can form, which may cause damage to the electrical components. Do not put the robot controller into operation until the internal temperature of the cabinet has adjusted to the ambient temperature.

**Function test**

The following tests must be carried out before start-up and recommissioning:

**General test:**

It must be ensured that:

- The industrial robot is correctly installed and fastened in accordance with the specifications in the documentation.
- There is no damage to the robot that could be attributed to external forces. Examples: Dents or abrasion that could be caused by an impact or collision.

**WARNING** In the case of such damage, the affected components must be exchanged. In particular, the motor and counter-balancing system must be checked carefully. External forces can cause non-visible damage. For example, it can lead to a gradual loss of drive power from the motor, resulting in unintended movements of the manipulator. Death, injuries or considerable damage to property may otherwise result.

- There are no foreign bodies or loose parts on the industrial robot.
- All required safety equipment is correctly installed and operational.
The power supply ratings of the industrial robot correspond to the local supply voltage and mains type.
The ground conductor and the equipotential bonding cable are sufficiently rated and correctly connected.
The connecting cables are correctly connected and the connectors are locked.

Test of the safety functions:
A function test must be carried out for the following safety functions to ensure that they are functioning correctly:
- Local EMERGENCY STOP device
- External EMERGENCY STOP device (input and output)
- Enabling device (in the test modes)
- Operator safety
- All other safety-relevant inputs and outputs used
- Other external safety functions

5.8.3.1 Checking machine data and safety configuration

The industrial robot must not be moved if incorrect machine data or an incorrect controller configuration are loaded. Death, severe injuries or considerable damage to property may otherwise result. The correct data must be loaded.

- Following the start-up procedure, the practical tests for the machine data must be carried out. The tool must be calibrated (either via an actual calibration or through numerical entry of the data).
- Following modifications to the machine data, the safety configuration must be checked.
- After activation of a WorkVisual project on the robot controller, the safety configuration must be checked.
- If machine data are adopted when checking the safety configuration (regardless of the reason for the safety configuration check), the practical tests for the machine data must be carried out.
- System Software 8.3 or higher: If the checksum of the safety configuration has changed, the safe axis monitoring functions must be checked.

Information about checking the safety configuration and the safe axis monitoring functions is contained in the Operating and Programming Instructions for System Integrators.

If the practical tests are not successfully completed in the initial start-up, KUKA Deutschland GmbH must be contacted.
If the practical tests are not successfully completed during a different procedure, the machine data and the safety-relevant controller configuration must be checked and corrected.

General practical test
If practical tests are required for the machine data, this test must always be carried out.

For 6-axis robots:
The following methods are available for performing the practical test:
- TCP calibration with the XYZ 4-point method
  The practical test is passed if the TCP has been successfully calibrated.

Or:
1. Align the TCP with a freely selected point. The point serves as a reference point.
   - The point must be located so that reorientation is possible.
   - The point must not be located on the Z axis of the FLANGE coordinate system.

2. Move the TCP manually at least 45° once in each of the A, B and C directions.
   The movements do not have to be accumulative, i.e. after motion in one direction it is possible to return to the original position before moving in the next direction.
   The practical test is passed if the TCP does not deviate from the reference point by more than 2 cm in total.

For palletizing robots:

Palletizing robots, in this case, are either robots that can be used only as palletizers from the start or robots operated in palletizing mode. The latter must also be in palletizing mode during the practical test.

First part:

1. Mark the starting position of the TCP.
   Also read and note the starting position from the Actual position – Cartesian display on the smartHMI.
2. Jog the TCP in the X direction. The distance must be at least 20% of the robot’s maximum reach. Determine the exact length via the Actual position display.
3. Measure the distance covered and compare it with the distance value displayed on the smartHMI. The deviation must be < 5%.
4. Repeat steps 1 and 2 for the Y direction and Z direction.
   The first part of the practical test is passed if the deviation is < 5% in every direction.

Second part:

- Rotate the tool manually about A by 45°: once in the plus direction, once in the minus direction. At the same time, observe the TCP.

The second part of the practical test is passed if the position of the TCP in space is not altered during the rotations.

Practical test for axes that are not mathematically coupled

If practical tests are required for the machine data, this test must be carried out when axes are present that are not mathematically coupled.

1. Mark the starting position of the axis that is not mathematically coupled.
   Also read and note the start position from the Actual position display on the smartHMI.
2. Move the axis manually by a freely selected path length. Determine the path length from the Actual position display:
   - Move linear axes a specific distance.
   - Move rotational axes through a specific angle.
3. Measure the length of the path covered and compare it with the value displayed on the smartHMI.
   The practical test is passed if the values differ by no more than 5%.
4. Repeat the test for each axis that is not mathematically coupled.

Practical test for robot on KUKA linear unit

If practical tests are required for the machine data, this test must be carried out if the robot and KL are mathematically coupled.

- Move the KL manually in Cartesian mode.
  The practical test is passed if the TCP does not move at the same time.
Practical test for couplable axes

If practical tests are required for the machine data, this test must be carried out when axes are present that can be physically coupled and uncoupled, e.g. a servo gun.

1. Physically uncouple the couplable axis.
2. Move all the remaining axes individually.

The practical test is passed if it has been possible to move all the remaining axes.

5.8.3.2 Start-up mode

Description

The industrial robot can be set to Start-up mode via the smartHMI user interface. In this mode, the manipulator can be moved in T1 without the external safeguards being put into operation.

The safety interface used affects “Start-up” mode:

Discrete safety interface

- System Software 8.2 or earlier:
  
  Start-up mode is always possible if all input signals at the discrete safety interface have the state “logic zero”. If this is not the case, the robot controller prevents or terminates Start-up mode.

  If an additional discrete safety interface for safety options is used, the inputs there must also have the state “logic zero”.

- System Software 8.3 or higher:
  
  Start-up mode is always possible. This also means that it is independent of the state of the inputs at the discrete safety interface.

  If an additional discrete safety interface is used for safety options: The states of these inputs are also irrelevant.

Ethernet safety interface

The robot controller prevents or terminates Start-up mode if a connection to a higher-level safety system exists or is established.

Effect

When the Start-up mode is activated, all outputs are automatically set to the state “logic zero”.

If the robot controller has a peripheral contactor (US2), and if the safety configuration specifies for this to switch in accordance with the motion enable, then the same also applies in Start-up mode. This means that if motion enable is present, the US2 voltage is switched on – even in Start-up mode.

NOTICE

The maximum number of switching cycles of the peripheral contactors is 175 per day.

Hazards

Possible hazards and risks involved in using Start-up mode:

- A person walks into the manipulator’s danger zone.
- In a hazardous situation, a disabled external EMERGENCY STOP device is actuated and the manipulator is not shut down.

Additional measures for avoiding risks in Start-up mode:

- Cover disabled EMERGENCY STOP devices or attach a warning sign indicating that the EMERGENCY STOP device is out of operation.
- If there is no safety fence, other measures must be taken to prevent persons from entering the manipulator’s danger zone, e.g. use of warning tape.
Use

Intended use of Start-up mode:
- Start-up in T1 mode when the external safeguards have not yet been installed or put into operation. The danger zone must be delimited at least by means of warning tape.
- Fault localization (periphery fault).
- Use of Start-up mode must be minimized as much as possible.

**WARNING**
Use of Start-up mode disables all external safeguards. The service personnel are responsible for ensuring that there is no-one in or near the danger zone of the manipulator as long as the safeguards are disabled. Failure to observe this precaution may result in death, injuries or damage to property.

Misuse
Any use or application deviating from the intended use is deemed to be misuse and is not allowed. KUKA Deutschland GmbH is not liable for any damage resulting from such misuse. The risk lies entirely with the user.

5.8.4 Manual mode

General
Manual mode is the mode for setup work. Setup work is all the tasks that have to be carried out on the industrial robot to enable automatic operation. Setup work includes:
- Jog mode
- Teaching
- Programming
- Program verification

The following must be taken into consideration in manual mode:
- New or modified programs must always be tested first in Manual Reduced Velocity mode (T1).
- The manipulator, tooling or external axes (optional) must never touch or project beyond the safety fence.
- Workpieces, tooling and other objects must not become jammed as a result of the industrial robot motion, nor must they lead to short-circuits or be liable to fall off.
- All setup work must be carried out, where possible, from outside the safeguarded area.

Setup work in T1
If it is necessary to carry out setup work from inside the safeguarded area, the following must be taken into consideration in the operating mode **Manual Reduced Velocity (T1)**:
- If it can be avoided, there must be no other persons inside the safeguarded area.
- If it is necessary for there to be several persons inside the safeguarded area, the following must be observed:
  - Each person must have an enabling device.
  - All persons must have an unimpeded view of the industrial robot.
  - Eye-contact between all persons must be possible at all times.
  - The operator must be so positioned that he can see into the danger area and get out of harm’s way.
  - Unexpected motions of the manipulator cannot be ruled out, e.g. in the event of a fault. For this reason, an appropriate clearance must be main-
5 Safety

5.1 Safety distances

The minimum distance between persons and the manipulator (including tool). Guide value: 50 cm.

The minimum clearance may vary depending on local circumstances, the motion program and other factors. The minimum clearance that is to apply for the specific application must be decided by the user on the basis of a risk assessment.

Setup work in T2

If it is necessary to carry out setup work from inside the safeguarded area, the following must be taken into consideration in the operating mode Manual High Velocity (T2):

- This mode may only be used if the application requires a test at a velocity higher than that possible in T1 mode.
- Teaching and programming are not permissible in this operating mode.
- Before commencing the test, the operator must ensure that the enabling devices are operational.
- The operator must be positioned outside the danger zone.
- There must be no other persons inside the safeguarded area. It is the responsibility of the operator to ensure this.

5.8.5 Simulation

Simulation programs do not correspond exactly to reality. Robot programs created in simulation programs must be tested in the system in Manual Reduced Velocity mode (T1). It may be necessary to modify the program.

5.8.6 Automatic mode

Automatic mode is only permissible in compliance with the following safety measures:

- All safety equipment and safeguards are present and operational.
- There are no persons in the system.
- The defined working procedures are adhered to.

If the manipulator or an external axis (optional) comes to a standstill for no apparent reason, the danger zone must not be entered until an EMERGENCY STOP has been triggered.

5.8.7 Maintenance and repair

After maintenance and repair work, checks must be carried out to ensure the required safety level. The valid national or regional work safety regulations must be observed for this check. The correct functioning of all safety functions must also be tested.

The purpose of maintenance and repair work is to ensure that the system is kept operational or, in the event of a fault, to return the system to an operational state. Repair work includes troubleshooting in addition to the actual repair itself.

The following safety measures must be carried out when working on the industrial robot:

- Carry out work outside the danger zone. If work inside the danger zone is necessary, the user must define additional safety measures to ensure the safe protection of personnel.
- Switch off the industrial robot and secure it (e.g. with a padlock) to prevent it from being switched on again. If it is necessary to carry out work with the
robot controller switched on, the user must define additional safety mea-
sures to ensure the safe protection of personnel.

- If it is necessary to carry out work with the robot controller switched on, this
  may only be done in operating mode T1.
- Label the system with a sign indicating that work is in progress. This sign
  must remain in place, even during temporary interruptions to the work.
- The EMERGENCY STOP devices must remain active. If safety functions
  or safeguards are deactivated during maintenance or repair work, they
  must be reactivated immediately after the work is completed.

**DANGER**

Before work is commenced on live parts of the robot sys-
tem, the main switch must be turned off and secured
against being switched on again. The system must then be checked to en-
sure that it is deenergized.

It is not sufficient, before commencing work on live parts, to execute an
EMERGENCY STOP or a safety stop, or to switch off the drives, as this does
not disconnect the robot system from the mains power supply. Parts remain
energized. Death or severe injuries may result.

Faulty components must be replaced using new components with the same
article numbers or equivalent components approved by KUKA Deutschland
GmbH for this purpose.

Cleaning and preventive maintenance work is to be carried out in accordance
with the operating instructions.

**Robot controller**

Even when the robot controller is switched off, parts connected to peripheral
devices may still carry voltage. The external power sources must therefore be
switched off if work is to be carried out on the robot controller.

The ESD regulations must be adhered to when working on components in the
robot controller.

Voltages in excess of 50 V (up to 780 V) can be present in various compo-
nents for several minutes after the robot controller has been switched off! To
prevent life-threatening injuries, no work may be carried out on the industrial
robot in this time.

Water and dust must be prevented from entering the robot controller.

**Counterbal-
ancing system**

Some robot variants are equipped with a hydropneumatic, spring or gas cylin-
der counterbalancing system.

The hydropneumatic and gas cylinder counterbalancing systems are pressure
equipment and, as such, are subject to obligatory equipment monitoring and
the provisions of the Pressure Equipment Directive.

The user must comply with the applicable national laws, regulations and stan-
dards pertaining to pressure equipment.

Inspection intervals in Germany in accordance with Industrial Safety Order,
Sections 14 and 15. Inspection by the user before commissioning at the instal-
lation site.

The following safety measures must be carried out when working on the coun-
terbalancing system:

- The manipulator assemblies supported by the counterbalancing systems
  must be secured.
- Work on the counterbalancing systems must only be carried out by quali-
  fied personnel.

**Hazardous
substances**

The following safety measures must be carried out when handling hazardous
substances:

- Avoid prolonged and repeated intensive contact with the skin.
5 Safety

- Avoid breathing in oil spray or vapors.
- Clean skin and apply skin cream.

To ensure safe use of our products, we recommend regularly requesting up-to-date safety data sheets for hazardous substances.

5.8.8 Decommissioning, storage and disposal

The industrial robot must be decommissioned, stored and disposed of in accordance with the applicable national laws, regulations and standards.

5.8.9 Safety measures for “single point of control”

Overview

If certain components in the industrial robot are operated, safety measures must be taken to ensure complete implementation of the principle of “single point of control” (SPOC).

The relevant components are:

- Submit interpreter
- PLC
- OPC server
- Remote control tools
- Tools for configuration of bus systems with online functionality
- KUKA.RobotSensorInterface

The implementation of additional safety measures may be required. This must be clarified for each specific application; this is the responsibility of the system integrator, programmer or user of the system.

Since only the system integrator knows the safe states of actuators in the periphery of the robot controller, it is his task to set these actuators to a safe state, e.g. in the event of an EMERGENCY STOP.

T1, T2

In modes T1 and T2, the components referred to above may only access the industrial robot if the following signals have the following states:

<table>
<thead>
<tr>
<th>Signal</th>
<th>State required for SPOC</th>
</tr>
</thead>
<tbody>
<tr>
<td>$USER_SAF</td>
<td>TRUE</td>
</tr>
<tr>
<td>$SPOC_MOTION_ENABLE</td>
<td>TRUE</td>
</tr>
</tbody>
</table>

Submit interpreter, PLC

If motions, (e.g. drives or grippers) are controlled with the submit interpreter or the PLC via the I/O system, and if they are not safeguarded by other means, then this control will take effect even in T1 and T2 modes or while an EMERGENCY STOP is active.

If variables that affect the robot motion (e.g. override) are modified with the submit interpreter or the PLC, this takes effect even in T1 and T2 modes or while an EMERGENCY STOP is active.

Safety measures:

- In T1 and T2, the system variable $OV_PRO must not be written to by the submit interpreter or the PLC.
- Do not modify safety-relevant signals and variables (e.g. operating mode, EMERGENCY STOP, safety gate contact) via the submit interpreter or PLC.

If modifications are nonetheless required, all safety-relevant signals and variables must be linked in such a way that they cannot be set to a dan-
dangerous state by the submit interpreter or PLC. This is the responsibility of the system integrator.

**OPC server, remote control tools**

These components can be used with write access to modify programs, outputs or other parameters of the robot controller, without this being noticed by any persons located inside the system.

**Safety measure:**

If these components are used, outputs that could cause a hazard must be determined in a risk assessment. These outputs must be designed in such a way that they cannot be set without being enabled. This can be done using an external enabling device, for example.

**Tools for configuration of bus systems**

If these components have an online functionality, they can be used with write access to modify programs, outputs or other parameters of the robot controller, without this being noticed by any persons located inside the system.

- WorkVisual from KUKA
- Tools from other manufacturers

**Safety measure:**

In the test modes, programs, outputs or other parameters of the robot controller must not be modified using these components.

### 5.9 Applied norms and regulations

<table>
<thead>
<tr>
<th>Name/Edition</th>
<th>Definition</th>
</tr>
</thead>
</table>
| 2006/42/EU:2006 | **Machinery Directive:**

| 2014/30/EU:2014 | **EMC Directive:**

| 2014/68/EU:2014 | **Pressure Equipment Directive:**
|                 | (Only applicable for robots with hydropneumatic counterbalancing system.) |

| EN ISO 13850:2015 | **Safety of machinery:**
|                  | Emergency stop - Principles for design |

| EN ISO 13849-1:2015 | **Safety of machinery:**
|                    | Safety-related parts of control systems - Part 1: General principles of design |

| EN ISO 13849-2:2012 | **Safety of machinery:**
<p>|                    | Safety-related parts of control systems - Part 2: Validation |</p>
<table>
<thead>
<tr>
<th>Standard</th>
<th>Description</th>
</tr>
</thead>
</table>
| EN ISO 12100:2010 | **Safety of machinery:**  
  General principles of design, risk assessment and risk reduction |
| EN ISO 10218-1:2011 | **Industrial robots – Safety requirements:**  
  Part 1: Robots  
  **Note:** Content equivalent to ANSI/RIA R.15.06-2012, Part 1 |
| EN 614-1:2006+A1:2009 | **Safety of machinery:**  
  Ergonomic design principles - Part 1: Terms and general principles |
| EN 61000-6-2:2005 | **Electromagnetic compatibility (EMC):**  
  Part 6-2: Generic standards; Immunity for industrial environments |
| EN 61000-6-4:2007 + A1:2011 | **Electromagnetic compatibility (EMC):**  
  Part 6-4: Generic standards; Emission standard for industrial environments |
| EN 60204-1:2006/A1:2009 | **Safety of machinery:**  
  Electrical equipment of machines - Part 1: General requirements |
6 Planning

6.1 Electromagnetic compatibility (EMC)

Description
If connecting cables (e.g. field buses, etc.) are routed to the control PC from outside, only shielded cables with an adequate degree of shielding may be used. The cable shield must be connected with maximum surface area to the PE rail in the cabinet using shield terminals (screw-type, no clamps).

The robot controller corresponds to EMC class A, Group 1, in accordance with EN 55011 and is intended for use in an industrial setting. Assuring the electromagnetic compatibility in other environments may be difficult due to conducted and radiated disturbances that are liable to occur.

6.2 Installation conditions

Dimensions
The robot controller can be installed in a 19" rack or as a standalone device. The specifications in the "Technical data" chapter (>>> 4 "Technical data" Page 21) must be observed. If the robot controller is to be installed in a 19" rack, the depth must be at least 700 mm. The robot controller is designed for use in the horizontal position. The robot controller can optionally be operated in the vertical position.

If the robot controller is to be installed in a 19" rack, it must be fastened in the rack by appropriate means (preferably angle plates) along the entire side edge in order to prevent distortion of the housing.

Both sides of the robot controller must always be accessible to the cooling air. Clearance of 70 mm on each side.

Fig. 6-1: Dimensions
6.3 Connection conditions

**Power supply connection**

The robot controller may only be connected to grounded-neutral power supply systems.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated supply voltage</td>
<td>200 V - 230 V AC, single-phase, two-phase (with grounded neutral (as symmetrical as possible) between the phases used)</td>
</tr>
<tr>
<td>Permissible tolerance of rated supply voltage</td>
<td>Rated supply voltage ±10%</td>
</tr>
<tr>
<td>Mains frequency</td>
<td>50 Hz ± 1 Hz or 60 Hz ± 1 Hz</td>
</tr>
<tr>
<td>Rated power input</td>
<td>2 kVA, see rating plate</td>
</tr>
<tr>
<td>Thermal power dissipation</td>
<td>max. 400 W</td>
</tr>
<tr>
<td>Mains-side fusing</td>
<td>2x 16 A slow-blowing (1 (2)x phase; 1x neutral conductor (optional))</td>
</tr>
<tr>
<td>Equipotential bonding</td>
<td>The common neutral point for the equipotential bonding conductors and all protective ground conductors is the reference bus of the power unit</td>
</tr>
</tbody>
</table>

**CAUTION**
If the robot controller is connected to a power system without a grounded neutral, this may cause malfunctions in the robot controller and material damage to the power supply units. Electrical voltage can cause injuries. The robot controller may only be operated with grounded-neutral power supply systems.

**Info**
If use of a residual-current circuit-breaker (RCCB) is planned, we recommend the following: trip current difference 300 mA for controllers up to and including WK35/2017 (see identification plate), and trip current difference 30 mA per robot controller, universal-current sensitive, selective, for controllers from WK36/2017 onwards.

**Cable lengths**

For cable designations, standard lengths and optional lengths, please refer to the operating instructions or assembly instructions of the manipulator and/or the assembly and operating instructions for KR C4 external cabling for robot controllers.

**Warning**
When using smartPAD cable extensions, only two extensions may be used. An overall cable length of 50 m must not be exceeded.

**Warning**
The difference in the cable lengths between the individual channels of the RDC box must not exceed 10 m.
6.4 Power supply connection

Description
For connection to the mains, the robot controller is equipped with a 3-pole socket for non-heating appliances. The robot controller must be connected to the mains via the device connection cable included in the scope of supply.

The robot controller can be connected to the mains via the following device connection cables:
- with mains connector
- without mains connector

Infeed
- 200 V - 230 V AC, single-phase, two-phase (with grounded neutral (as symmetrical as possible) between the phases used)
- 50 Hz ± 1 Hz or 60 Hz ± 1 Hz

Fusing
- 2x 16 A slow-blowing, type C (1 (2)x phase; 1x neutral conductor (optional))

6.5 Safety interface X11

Description
EMERGENCY STOP devices must be connected via safety interface X11 or linked together by means of higher-level controllers (e.g. PLC).

Wiring
Take the following points into consideration when wiring safety interface X11:
- System concept
- Safety concept

6.5.1 X11 safety interface

The X11 safety interface is wired internally to the CCU.

<table>
<thead>
<tr>
<th>Pin</th>
<th>Description</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Test output A (Test signal A)</td>
<td>Makes the pulsed voltage available for the individual interface inputs of channel A.</td>
</tr>
<tr>
<td>3</td>
<td>Test output B (Test signal B)</td>
<td>Makes the clocked voltage available for the individual interface inputs of channel B.</td>
</tr>
<tr>
<td>5</td>
<td>External E-STOP channel A (Safe input 1)</td>
<td>E-STOP, dual-channel input, max. 24 V. (&gt;&gt;&gt; “CIB_SR inputs” Page 24)</td>
</tr>
<tr>
<td>7</td>
<td>External E-STOP, channel B (Safe input 1)</td>
<td>Triggering of the E-STOP function in the robot controller.</td>
</tr>
</tbody>
</table>
### KR C4 compact

**4** Operator safety, channel A  
(Safe input 2)  
For dual-channel connection of a safety gate locking mechanism, max. 24 V.  
(>>> "CIB_SR inputs" Page 24)  
As long as the signal is active, the drives can be switched on. Only effective in the AUTOMATIC modes.

**13** Operator safety, channel B  
(Safe input 2)  

**6** Acknowledge operator safety, channel A  
(Safe input 3)  
For connection of a dual-channel input for acknowledging operator safety with floating contacts. (>>> "CIB_SR inputs" Page 24)

**15** Acknowledge operator safety, channel B  
(Safe input 3)  
The response of the “Operator safety acknowledgement” input can be configured in the KUKA system software. After closing the safety gate (operator safety), manipulator motion can be enabled in the automatic modes using an acknowledge button outside the safety fence. This function is deactivated on delivery.

**8** Safe operational stop, channel A  
(Safe input 4)  
Activation of standstill monitoring  
Stop 0 is initiated if the activated monitoring is violated.

**17** Safe operational stop, channel B  
(Safe input 4)  

**19** Safety stop 2, channel A  
(Safe input 5)  
Triggering of stop 2 and activation of standstill monitoring at standstill of all axes.

**29** Safety stop 2, channel B  
(Safe input 5)  
Stop 0 is initiated if the activated monitoring is violated.

**21** External enabling 1 channel A  
(Safe input 6)  
For connection of an external 2-channel enabling switch 1 with floating contacts.  
If no external enabling switch 1 is connected, channel A pins 20/21 and channel B 30/31 must be jumpered. Only effective in TEST modes.

**31** External enabling 1 channel B  
(Safe input 6)  

**23** External enabling 2 channel A  
(Safe input 7)  
For connection of an external 2-channel enabling switch 2 with floating contacts.  
If no external enabling switch 2 is connected, channel A pins 22/23 and channel B 32/33 must be jumpered. Only effective in TEST modes.

**33** External enabling 2 channel B  
(Safe input 7)  

<table>
<thead>
<tr>
<th>Pin</th>
<th>Description</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Operator safety, channel A (Safe input 2)</td>
<td>For dual-channel connection of a safety gate locking mechanism, max. 24 V. (&gt;&gt;&gt; &quot;CIB_SR inputs&quot; Page 24) As long as the signal is active, the drives can be switched on. Only effective in the AUTOMATIC modes.</td>
</tr>
<tr>
<td>13</td>
<td>Operator safety, channel B (Safe input 2)</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Acknowledge operator safety, channel A (Safe input 3)</td>
<td>For connection of a dual-channel input for acknowledging operator safety with floating contacts. (&gt;&gt;&gt; &quot;CIB_SR inputs&quot; Page 24)</td>
</tr>
<tr>
<td>15</td>
<td>Acknowledge operator safety, channel B (Safe input 3)</td>
<td>The response of the “Operator safety acknowledgement” input can be configured in the KUKA system software. After closing the safety gate (operator safety), manipulator motion can be enabled in the automatic modes using an acknowledge button outside the safety fence. This function is deactivated on delivery.</td>
</tr>
<tr>
<td>8</td>
<td>Safe operational stop, channel A (Safe input 4)</td>
<td>Activation of standstill monitoring Stop 0 is initiated if the activated monitoring is violated.</td>
</tr>
<tr>
<td>17</td>
<td>Safe operational stop, channel B (Safe input 4)</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Safety stop 2, channel A (Safe input 5)</td>
<td>Triggering of stop 2 and activation of standstill monitoring at standstill of all axes.</td>
</tr>
<tr>
<td>29</td>
<td>Safety stop 2, channel B (Safe input 5)</td>
<td>Stop 0 is initiated if the activated monitoring is violated.</td>
</tr>
<tr>
<td>21</td>
<td>External enabling 1 channel A (Safe input 6)</td>
<td>For connection of an external 2-channel enabling switch 1 with floating contacts. If no external enabling switch 1 is connected, channel A pins 20/21 and channel B 30/31 must be jumpered. Only effective in TEST modes.</td>
</tr>
<tr>
<td>31</td>
<td>External enabling 1 channel B (Safe input 6)</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>External enabling 2 channel A (Safe input 7)</td>
<td>For connection of an external 2-channel enabling switch 2 with floating contacts. If no external enabling switch 2 is connected, channel A pins 22/23 and channel B 32/33 must be jumpered. Only effective in TEST modes.</td>
</tr>
<tr>
<td>33</td>
<td>External enabling 2 channel B (Safe input 7)</td>
<td></td>
</tr>
</tbody>
</table>
Function of external axis enabling switch:

- **External enabling 1**
  - Enabling switch must be pressed for jogging in T1 or T2. Input is closed.
- **External enabling 2**
  - Enabling switch is not in the panic position. Input is closed.
  - If a smartPAD is connected, its enabling switches and the external enabling are ANDed.

Pin Description Function

<table>
<thead>
<tr>
<th>Pin</th>
<th>Description</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>34</td>
<td>Local E-STOP channel A</td>
<td>Output, floating contacts from internal E-STOP.</td>
</tr>
<tr>
<td>35</td>
<td></td>
<td>(&gt;&gt;&gt; “CIB_SR outputs” Page 23)</td>
</tr>
<tr>
<td>45</td>
<td>Local E-STOP channel B</td>
<td>The contacts are closed if the following conditions are met:</td>
</tr>
<tr>
<td>46</td>
<td></td>
<td>- E-STOP on smartPAD not actuated</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Controller switched on and operational</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The contacts open if any condition is not met.</td>
</tr>
<tr>
<td>36</td>
<td>Acknowledge operator safety, channel A</td>
<td>Output, floating contact for operator safety acknowledgement, connection 1 and 2</td>
</tr>
<tr>
<td>37</td>
<td>Acknowledge operator safety, channel B</td>
<td>Output can be used to forward the assured operator safety (input BS = 1 and, if configured, input QBS acknowledged) to other robot controllers on the same safety fence.</td>
</tr>
<tr>
<td>38</td>
<td>Peri enabled, channel A</td>
<td>Output, floating contact</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(&gt;&gt;&gt; “Signal “Peri enabled”” Page 57)</td>
</tr>
<tr>
<td>39</td>
<td>Peri enabled, channel B</td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>Peri enabled, channel B</td>
<td></td>
</tr>
</tbody>
</table>

**Function “Peri enabled”**

The signal “Peri enabled” is set to 1 (active) if the following conditions are met:

- Drives are switched on.
- Safety controller motion enable signal present.
- The message “Operator safety open” must not be active.

This message is only active in the modes T1 and T2.

“Peri enabled” in conjunction with the signal “Safe operational stop”
In the case of activation of the signal “Safe operational stop” during the motion:
- Error -> braking with Stop 0. “Peri enabled” eliminated.
- Activation of the signal “Safe operational stop” with the manipulator stationary:
  Release the brakes, switch drives to servo-control and monitor for restart.
  “Peri enabled” remains active.
  Signal “Motion enable” remains active.
  Signal “Peri enabled” remains active.

“Peri enabled” in conjunction with the signal “Safety stop 2”
- In the case of activation of the signal “Safety stop 2”:
  - Stop 2 of the manipulator.
  - Signal “Drive enable” remains active.
  - Brakes remain released.
  - Manipulator remains under servo-control.
  - Monitoring for restart active.
  - Signal “Motion enable” is deactivated.
  - Signal “Peri enabled” is deactivated.

### 6.5.2 Wiring example for E-STOP circuit and safeguard

**Description**
The EMERGENCY STOP devices are connected to X11 in the robot controller.

**EMERGENCY STOP**

<table>
<thead>
<tr>
<th>WARNING</th>
<th>The EMERGENCY STOP devices on the robot controller must be integrated into the EMERGENCY STOP circuit of the system by the system integrator. Failure to do this may result in death, severe injuries or considerable damage to property.</th>
</tr>
</thead>
</table>

![Wiring diagram](image.png)

**Fig. 6-3: Wiring example: EMERGENCY STOP**

**Safety gate**
A dual-channel acknowledge button must be installed outside the physical safeguard. The system integrator must ensure that closing the safety gate inadvertently does not directly set the signal for operator safety. After the safety gate has closed, the signal for operator safety must only be confirmed by an external device, e.g. an acknowledge button, that can only be accessed from...
outside the danger zone. The closing of the safety gate must be confirmed by pressing the acknowledge button before the industrial robot can be started again in Automatic mode.

**WARNING**
The safety gate on the robot controller must be integrated into the safeguard circuit of the system by the system integrator. Failure to do this may result in death, severe injuries or considerable damage to property.

6.5.3 Wiring example for safe inputs and outputs

**Safe input**
The switch-off capability of the inputs is monitored cyclically.

The inputs of the CIB_SR are of dual-channel design with external testing. The dual-channel operation of the inputs is monitored cyclically.

The following diagram illustrates the connection of a safe input to a floating contact provided by the customer.
Test outputs A and B are fed with the supply voltage of the CIB_SR. Test outputs A and B are sustained short-circuit proof. The test outputs must only be used to supply the CIB_SR inputs, and for no other purpose.

The wiring example can be used to achieve compliance with SIL2 (DIN EN 62061) and Cat. 3 (DIN EN 13849).

**Dynamic testing**
- The switch-off capability of the inputs is tested cyclically. For this, the test outputs TA_A and TA_B are switched off alternately.
- The switch-off pulse length is defined for the CIB_SRs as $t_1 = 625 \mu s$ ($125 \mu s - 2.375$ ms).
- The duration $t_2$ between two switch-off pulses on one channel is 106 ms.
- The input channel SIN_x_A must be supplied by the test signal TA_A. The input channel SIN_x_B must be supplied by the test signal TA_B. No other power supply is permissible.
- It is only permitted to connect sensors which allow the connection of test signals and which provide floating contacts.
- The signals TA_A and TA_B must not be significantly delayed by the switching element.

**Switch-off pulse diagram**

![Switch-off pulse diagram](image)

**Fig. 6-6: Switch-off pulse diagram, test outputs**

- $t_1$ Switch-off pulse length
- $t_2$ Switch-off period per channel (106 ms)
- $t_3$ Offset between switch-off pulses of both channels (53 ms)
- TA/A Test output channel A
- TA/B Test output channel B
- SIN_x_A Input X, channel A
- SIN_x_B Input X, channel B
Safe output

On the CIB_SR, the outputs are provided as dual-channel floating relay outputs.

The following diagram illustrates the connection of a safe output to a safe input provided by the customer with external test facility. The input used by the customer must be monitored externally for cross-connection.

![Connection schematic for safe output](image)

Fig. 6-7: Connection schematic for safe output

1. CIB_SR
2. Robot controller
3. Interface X11, safe output
4. Output wiring
5. System side
6. Safe input (Fail Safe PLC, safety switching device)
7. Test output channel B
8. Test output channel A
9. Input X, channel A
10. Input X, channel B

The wiring example shown can be used to achieve compliance with SIL2 (DIN EN 62061) and Cat. 3 (DIN EN 13849).

6.6 Safety functions via Ethernet safety interface

Description

The exchange of safety-relevant signals between the controller and the system is carried out via the Ethernet safety interface (e.g. PROFINet or CIP Safety). The assignment of the input and output states within the Ethernet safety interface protocol are listed below. In addition, non-safety-oriented information from the safety controller is sent to the non-safe section of the higher-level controller for the purpose of diagnosis and control.

Reserved bits

Reserved safe inputs can be pre-assigned by a PLC with the values 0 or 1. In both cases, the manipulator will move. If a safety function is assigned to a reserved input (e.g. in the case of a software update) and if this input is preset with the value 0, then the manipulator either does not move or comes unexpectedly to a standstill.

KUKA recommends pre-assignment of the reserved inputs with 1. If a reserved input has a new safety function assigned to it, and the input is not used by the customer’s PLC, the safety function is not activated. This prevents the safety controller from unexpectedly stopping the manipulator.
## Input byte 0

<table>
<thead>
<tr>
<th>Bit</th>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>RES</td>
<td>Reserved 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The value 1 must be assigned to the input.</td>
</tr>
<tr>
<td>1</td>
<td>NHE</td>
<td>Input for external Emergency Stop</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 = external E-STOP is active</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = external E-STOP is not active</td>
</tr>
<tr>
<td>2</td>
<td>BS</td>
<td>Operator safety</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 = operator safety is not active, e.g. safety gate open</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = operator safety is active</td>
</tr>
<tr>
<td>3</td>
<td>QBS</td>
<td>Acknowledgement of operator safety</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Precondition for acknowledgment of operator safety is the signal &quot;Operator safety active&quot; set in the BS bit.</td>
</tr>
<tr>
<td></td>
<td></td>
<td><strong>Note:</strong> If the “BS” signal is acknowledged by the system, this must be specified under <strong>Hardware options</strong> in the safety configuration. Information is contained in the Operating and Programming Instructions for System Integrators.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 = operator safety has not been acknowledged</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Edge 0 -&gt; 1 = operator safety has been acknowledged</td>
</tr>
<tr>
<td>4</td>
<td>SHS1</td>
<td>Safety STOP 1 (all axes)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• FF (motion enable) is set to 0.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Voltage US2 is switched off.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• AF (drives enable) is set to 0 after 1.5 s.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cancelation of this function does not require acknowledgement.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>This function is not permissible for the EMERGENCY STOP function.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 = safety stop is active</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = safety stop is not active</td>
</tr>
<tr>
<td>5</td>
<td>SHS2</td>
<td>Safety STOP 2 (all axes)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• FF (motion enable) is set to 0.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Voltage US2 is switched off.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cancelation of this function does not require acknowledgement.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>This function is not permissible for the EMERGENCY STOP function.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 = safety stop is active</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = safety stop is not active</td>
</tr>
<tr>
<td>6</td>
<td>RES</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>RES</td>
<td>-</td>
</tr>
</tbody>
</table>
### Input byte 1

<table>
<thead>
<tr>
<th>Bit</th>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
</table>
| 0   | US2    | Supply voltage US2 (signal for switching the second supply voltage, US2, without battery backup)  
If this output is not used, it should be set to 0.  
0 = switch off US2  
1 = switch on US2  
**Note:** Whether and how input US2 is used must be specified under **Hardware options** in the safety configuration. Information is contained in the Operating and Programming Instructions for System Integrators. |
| 1   | SBH    | Safe operational stop (all axes)  
Prerequisite: All axes are stationary  
Cancelation of this function does not require acknowledgement.  
This function is not permissible for the EMERGENCY STOP function.  
0 = safe operational stop is active.  
1 = safe operational stop is not active. |
| 2   | RES    | Reserved 11  
The value 1 must be assigned to the input. |
| 3   | RES    | Reserved 12  
The value 1 must be assigned to the input. |
| 4   | RES    | Reserved 13  
The value 1 must be assigned to the input. |
| 5   | RES    | Reserved 14  
The value 1 must be assigned to the input. |
| 6   | RES    | Reserved 15  
The value 1 must be assigned to the input. |
| 7   | SPA    | System Powerdown Acknowledge  
The system confirms that it has received the powerdown signal. A second after the “SP” (System Powerdown) signal has been set by the controller, the requested action is executed, without the need for confirmation from the PLC, and the controller shuts down.  
0 = confirmation is not active  
1 = confirmation is active |
<table>
<thead>
<tr>
<th>Bit</th>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>NHL</td>
<td>Local E-STOP (local E-STOP triggered)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 = local E-STOP is active</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = local E-STOP is not active</td>
</tr>
<tr>
<td>1</td>
<td>AF</td>
<td>Drives enable (the internal safety controller in the KRC has enabled the drives so that they can be switched on)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 = drives enable is not active (the robot controller must switch the drives off)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = drives enable is active (the robot controller must switch the drives to servo-control)</td>
</tr>
<tr>
<td>2</td>
<td>FF</td>
<td>Motion enable (the internal safety controller in the KRC has enabled robot motions)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 = motion enable is not active (the robot controller must stop the current motion)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = motion enable is active (the robot controller may trigger a motion)</td>
</tr>
<tr>
<td>3</td>
<td>ZS</td>
<td>The signal ZS (enabling) is set to 1 (active) if the following conditions are met:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- One of the enabling switches on the smartPAD is in the center position (enabling signal has been issued).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- T1 or T2 mode</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- External enabling signal has been issued (signal ZSE1/ZSE2).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Robot can be moved (no external EMERGENCY STOP, safety stop, etc.).</td>
</tr>
<tr>
<td>4</td>
<td>PE</td>
<td>The signal “Peri enabled” is set to 1 (active) if the following conditions are met:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Drives are switched on.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Safety controller motion enable signal present.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- The message “Operator safety open” must not be active.</td>
</tr>
<tr>
<td>5</td>
<td>AUT</td>
<td>The manipulator is in AUT or AUT EXT mode.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 = AUT or AUT EXT mode is not active</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = AUT or AUT EXT mode is active</td>
</tr>
<tr>
<td>6</td>
<td>T1</td>
<td>The manipulator is in Manual Reduced Velocity mode.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 = T1 mode is not active</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = T1 mode is active</td>
</tr>
<tr>
<td>7</td>
<td>T2</td>
<td>The manipulator is in Manual High Velocity mode.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 = T2 mode is not active</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = T2 mode is active</td>
</tr>
</tbody>
</table>
**Output byte 1**

<table>
<thead>
<tr>
<th>Bit</th>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
</table>
| 0   | NHE    | External E-STOP has been triggered.  
|     |        | 0 = external E-STOP is active  
|     |        | 1 = external E-STOP is not active |
| 1   | BSQ    | Operator safety acknowledged  
|     |        | 0 = operator safety is not assured  
|     |        | 1 = operator safety is assured (input BS = 1 and, if configured, input QBS acknowledged) |
| 2   | SHS1   | Safety stop 1 (all axes)  
|     |        | 0 = safety stop 1 is not active  
|     |        | 1 = safety stop 1 is active (safe state reached) |
| 3   | SHS2   | Safety stop 2 (all axes)  
|     |        | 0 = safety stop 2 is not active  
|     |        | 1 = safety stop 2 is active (safe state reached) |
| 4   | RES    | Reserved 13 |
| 5   | RES    | Reserved 14 |
| 6   | PSA    | Safety interface active  
|     |        | Precondition: An Ethernet interface must be installed on the controller, e.g. PROFINET or Ethernet/IP  
|     |        | 0 = safety interface is not active  
|     |        | 1 = safety interface is active |
| 7   | SP     | System Powerdown (controller will be shut down)  
|     |        | One second after the SP signal has been set, the PSA output is reset by the robot controller, without confirmation from the PLC, and the controller is shut down.  
|     |        | 0 = controller on safety interface is active.  
|     |        | 1 = controller will be shut down |

**6.6.1 Schematic circuit diagram for enabling switches**

**Description**

An external enabling switch can be connected to the higher-level safety controller. The signals (ZSE make contact and External panic break contact) must be correctly linked to the Ethernet safety interface signals in the safety controller. The resulting Ethernet safety interface signals must then be routed to the PROFIsafe of the KR C4. The response to the external enabling switch is then identical to that for a discretely connected X11.

**Signals**

![Schematic circuit diagram](image)

**Fig. 6-8: Schematic circuit diagram of external enabling switch**
6.6.2 SafeOperation via Ethernet safety interface (optional)

Description

The components of the industrial robot move within the limits that have been configured and activated. The actual positions are continuously calculated and monitored against the safety parameters that have been set. The safety controller monitors the industrial robot by means of the safety parameters that have been set. If a component of the industrial robot violates a monitoring limit or a safety parameter, the manipulator and external axes (optional) are stopped. The Ethernet safety interface can be used, for example, to signal a violation of safety monitoring functions.

In the case of the KR C4 compact or KR C4 compact slimline robot controller, safety options such as SafeOperation are only available via the Ethernet safety interface from KSS/VSS 8.3 onwards.

Reserved bits

Reserved safe inputs can be pre-assigned by a PLC with the values 0 or 1. In both cases, the manipulator will move. If a safety function is assigned to a reserved input (e.g. in the case of a software update) and if this input is preset with the value 0, then the manipulator either does not move or comes unexpectedly to a standstill.

KUKA recommends pre-assignment of the reserved inputs with 1. If a reserved input has a new safety function assigned to it, and the input is not used by the customer’s PLC, the safety function is not activated. This prevents the safety controller from unexpectedly stopping the manipulator.

Input byte 2

<table>
<thead>
<tr>
<th>Bit</th>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
</table>
| 0   | JR     | Mastering test (input for the reference switch of the mastering test)  
0 = reference switch is active (actuated).  
1 = reference switch is not active (not actuated). |
| 1   | VRED   | Reduced axis-specific and Cartesian velocity (activation of reduced velocity monitoring)  
0 = reduced velocity monitoring is active.  
1 = reduced velocity monitoring is not active. |
| 2 ... 7 | SBH1 ... 6 | Safe operational stop for axis group 1 … 6  
Assignment: Bit 2 = axis group 1 … bit 7 = axis group 6  
Signal for safe operational stop. The function does not trigger a stop, it only activates the safe standstill monitoring. Cancellation of this function does not require acknowledgement.  
0 = safe operational stop is active.  
1 = safe operational stop is not active. |
### Input byte 3

<table>
<thead>
<tr>
<th>Bit</th>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
</table>
| 0 ... 7 | RES | Reserved 25 ... 32  
The value 1 must be assigned to the inputs. |

### Input byte 4

<table>
<thead>
<tr>
<th>Bit</th>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
</table>
| 0 ... 7 | UER1 ... 8 | Monitoring spaces 1 ... 8  
Assignment: Bit 0 = monitoring space 1 ... bit 7  
= monitoring space 8  
0 = monitoring space is active.  
1 = monitoring space is not active. |

### Input byte 5

<table>
<thead>
<tr>
<th>Bit</th>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
</table>
| 0 ... 7 | UER9 ... 16 | Monitoring spaces 9 ... 16  
Assignment: Bit 0 = monitoring space 9 ... bit 7  
= monitoring space 16  
0 = monitoring space is active.  
1 = monitoring space is not active. |

### Input byte 6

<table>
<thead>
<tr>
<th>Bit</th>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
</table>
| 0 ... 7 | WZ1 ... 8 | Tool selection 1 ... 8  
Assignment: Bit 0 = tool 1 ... bit 7 = tool 8  
0 = tool is not active.  
1 = tool is active.  
Exactly one tool must be selected at all times. |

### Input byte 7

<table>
<thead>
<tr>
<th>Bit</th>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
</table>
| 0 ... 7 | WZ9 ... 16 | Tool selection 9 ... 16  
Assignment: Bit 0 = tool 9 ... bit 7 = tool 16  
0 = tool is not active.  
1 = tool is active.  
Exactly one tool must be selected at all times. |

### Output byte 2

<table>
<thead>
<tr>
<th>Bit</th>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
</table>
| 0 | SO | Activation status of the safety option  
0 = safety option is not active.  
1 = safety option is active |
| 1 | RR | Robot referenced  
Mastering test display  
0 = mastering is not referenced.  
1 = mastering test performed successfully. |
## KR C4 compact

### Output byte 3

<table>
<thead>
<tr>
<th>Bit</th>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
</table>
| 2   | JF     | Mastering error  
The space monitoring is deactivated if at least one axis is not mastered.  
0 = mastering error. Space monitoring has been deactivated.  
1 = no error. |
| 3   | VRED   | Reduced axis-specific and Cartesian velocity  
(activation status of reduced velocity monitoring)  
0 = reduced velocity monitoring is not active.  
1 = reduced velocity monitoring is active. |
| 4 ... 7 | SBH1 ... 4 | Activation status of safe operational stop for axis group 1 ... 4  
Assignment: Bit 4 = axis group 1 ... bit 7 = axis group 4  
0 = safe operational stop is not active.  
1 = safe operational stop is active. |

### Output byte 4

<table>
<thead>
<tr>
<th>Bit</th>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
</table>
| 0 ... 1 | SBH5 ... 6 | Activation status of safe operational stop for axis group 5 ... 6  
Assignment: Bit 0 = axis group 5 ... bit 1 = axis group 6  
0 = safe operational stop is not active.  
1 = safe operational stop is active. |
| 2   | SOS    | Safe Operation Stop  
0 = a safety function has triggered a stop. The output remains in the “0” state for at least 200 ms.  
1 = none of the safety functions has triggered a stop. |
| Note: The output SOS is available in System Software 8.3 or higher. In System Software 8.2 or lower, bit 2 is a spare bit. |
| 3 ... 7 | RES   | Reserved 28 ... 32 |

### Bit 0 ... 7 MR1 ... 8 | Alarm space 1 ... 8  
Assignment: Bit 0 = alarm space 1 (associated monitoring space 1) ... bit 7 = alarm space 8 (associated monitoring space 8)  
0 = monitoring space is violated.  
1 = monitoring space is not violated.  
**Note:** An inactive monitoring space is considered to be violated by default, i.e. in this case the associated safe output MRx has the state “0”. |
6 Planning

Output byte 5

<table>
<thead>
<tr>
<th>Bit</th>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 … 7</td>
<td>MR9 … 16</td>
<td>Alarm space 9 … 16</td>
</tr>
</tbody>
</table>

Assignment: Bit 0 = alarm space 9 (associated monitoring space 9) … bit 7 = alarm space 16 (associated monitoring space 16)

0 = monitoring space is violated.
1 = monitoring space is not violated.

Note: An inactive monitoring space is considered to be violated by default, i.e. in this case the associated safe output MRx has the state “0”.

Output byte 6

<table>
<thead>
<tr>
<th>Bit</th>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 … 7</td>
<td>RES</td>
<td>Reserved 49 … 56</td>
</tr>
</tbody>
</table>

Output byte 7

<table>
<thead>
<tr>
<th>Bit</th>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 … 7</td>
<td>RES</td>
<td>Reserved 57 … 64</td>
</tr>
</tbody>
</table>

6.6.3 KUKA Line Interface X66

Description

Connector X66 is intended for connecting an external computer for the purpose of installation, programming, debugging and diagnosis.

Necessary equipment

- RJ45 connector

![RJ-45 pin assignment](image)

Fig. 6-9: RJ-45 pin assignment

- Recommended connecting cable: Ethernet-compatible, min. category CAT 5E
- Maximum cable cross-section: AWG22

Connector pin allocation X66

<table>
<thead>
<tr>
<th>Pin</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TD+</td>
</tr>
<tr>
<td>2</td>
<td>TD-</td>
</tr>
<tr>
<td>3</td>
<td>RD+</td>
</tr>
<tr>
<td>6</td>
<td>RD-</td>
</tr>
<tr>
<td>4</td>
<td>C+</td>
</tr>
</tbody>
</table>
6.7 Mastering test

For the mastering test, a reference switch must be connected to the safety PLC and activated via PROFIsafe or CIP Safety. The safety PLC must evaluate the reference switch and set the input “Mastering test” accordingly.

6.8 X65 EtherCAT interface

Description
Connector X65 in the connection panel is the interface for connection of EtherCAT slaves outside the robot controller. The EtherCAT line is routed out of the robot controller.

The EtherCAT devices must be configured with WorkVisual.

Necessary equipment
- Connector, Data 3A RJ45

Fig. 6-10: RJ-45 pin assignment
- Cable clamping range: Ø9 ... Ø13 mm
- Maximum cable cross-section: AWG22
- Recommended connecting cable: Ethernet-compatible, min. category CAT 5

Connector pin allocation

<table>
<thead>
<tr>
<th>Pin</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TFPO_P</td>
</tr>
<tr>
<td>2</td>
<td>TFPO_N</td>
</tr>
<tr>
<td>3</td>
<td>TFPI_P</td>
</tr>
<tr>
<td>6</td>
<td>TFPI_I</td>
</tr>
<tr>
<td>-</td>
<td>PE</td>
</tr>
</tbody>
</table>

Interface X65 can be wired internally to the CCU_SR, either directly or via a bus coupler.
6.9  X69 KUKA Service Interface

Description  Interface X69 is intended for connecting a notebook for the purpose of diagnosis, WorkVisual configuration, update, etc., via the KSI (KUKA Service Interface). The service notebook does not have to be connected to the shop network for this.

Necessary equipment  

- RJ45 connector

![RJ-45 pin assignment](image)

**Fig. 6-11: RJ-45 pin assignment**

- Recommended connecting cable: Ethernet-compatible, min. category CAT 5
- Maximum cable cross-section: AWG22

<table>
<thead>
<tr>
<th>Pin</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TFPO_P</td>
</tr>
<tr>
<td>2</td>
<td>TFPO_N</td>
</tr>
<tr>
<td>3</td>
<td>TFPI_P</td>
</tr>
<tr>
<td>6</td>
<td>TFPI_I</td>
</tr>
<tr>
<td>-</td>
<td>PE</td>
</tr>
</tbody>
</table>

6.10  PE equipotential bonding

Description  The following cables must be connected before start-up:

- A 4 mm² cable as equipotential bonding between the manipulator and the robot controller.
- An additional PE conductor between the central PE rail of the supply cabinet and the PE connection of the robot controller. A cross section of 4 mm² is recommended.
6.11 Performance level

The safety functions of the robot controller conform to Category 3 and Performance Level d according to EN ISO 13849-1.

6.11.1 PFH values of the safety functions

The safety values are based on a service life of 20 years.

The PFH value classification of the controller is only valid if the E-STOP device is tested at least once every 12 months.

When evaluating system safety functions, it must be remembered that the PFH values for a combination of multiple controllers may have to be taken into consideration more than once. This is the case for RoboTeam systems or higher-level hazard areas. The PFH value determined for the safety function at system level must not exceed the limit for PL d.

The PFH values relate to the specific safety functions of the different controller variants.

Safety function groups:

- Standard safety functions
  - Operating mode selection
  - Operator safety
  - EMERGENCY STOP device
  - Enabling device
  - External safe operational stop
  - External safety stop 1
  - External safety stop 2
  - Velocity monitoring in T1
- Safety functions of KUKA Safe Robot Technology (optional)

Fig. 6-12: Equipotential bonding between the manipulator and the robot controller

1 Equipotential bonding connection on the manipulator
2 Equipotential bonding between the manipulator and the robot controller
3 PE cable to the central PE rail of the supply cabinet
4 Equipotential bonding connections on the robot controller
- Monitoring of axis spaces
- Monitoring of Cartesian spaces
- Monitoring of axis velocity
- Monitoring of Cartesian velocity
- Monitoring of axis acceleration
- Safe operational stop
- Tool monitoring

Overview of controller variant PFH values:

<table>
<thead>
<tr>
<th>Robot controller variant</th>
<th>PFH value</th>
</tr>
</thead>
<tbody>
<tr>
<td>KR C4 compact</td>
<td>&lt; 6.37 x 10^{-8}</td>
</tr>
</tbody>
</table>

For controller variants that are not listed here, please contact KUKA Deutschland GmbH.
7 Transportation

7.1 Transporting the robot controller

Preconditions
- The housing of the robot controller must be closed.
- No cables may be connected to the robot controller.
- The robot controller must be transported in a horizontal position.

Procedure
- Transport the robot controller using a pallet truck or a fork lift truck. The robot controller must be laid on a pallet.

If the robot controller is installed in an electrical enclosure during transportation, this may result in vibrations (oscillations). Such vibrations can cause contact problems on the PC plug-in cards.
8 Start-up and recommissioning

8.1 Installing the robot controller

Description

The robot controller can be installed in a 19" rack or as a standalone device.

Preconditions

- If the robot controller is to be installed in a 19" rack, the depth must be at least 700 mm.
- Both sides of the robot controller must be accessible to the cooling air.

Procedure

1. Check the robot controller for any damage caused during transportation.
2. Install the robot controller, preferably in the horizontal position. If the robot controller is installed in the vertical position, both sides must always be accessible to the cooling air.

8.2 Connecting the connecting cables

Overview

A cable set is supplied with the robot system. The basic version consists of:

- Motor cable, data cable
- Device connection cable

The following cables may be provided for additional applications:

- Peripheral cables

Procedure

1. Connect motor connector X20 to the drive box.
2. Connect data cable connector X21 to the control box.

8.3 Plugging in the KUKA smartPAD

Procedure

- Plug the KUKA smartPAD to X19 on the robot controller.

WARNING

If the smartPAD is disconnected, the system can no longer be switched off by means of the EMERGENCY STOP device on the smartPAD. For this reason, an external EMERGENCY STOP must be connected to the robot controller.

The user is responsible for ensuring that the smartPAD is immediately removed from the system when it has been disconnected. The smartPAD must be stored out of sight and reach of personnel working on the industrial robot. This prevents operational and non-operational EMERGENCY STOP devices from becoming interchanged.

Failure to observe these precautions may result in death, injuries or damage to property.

Connector pin allocation X19

<table>
<thead>
<tr>
<th>Pin</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>TD+</td>
</tr>
<tr>
<td>12</td>
<td>TD-</td>
</tr>
<tr>
<td>2</td>
<td>RD+</td>
</tr>
<tr>
<td>3</td>
<td>RD-</td>
</tr>
<tr>
<td>8</td>
<td>smartPAD plugged in (A) 0 V</td>
</tr>
<tr>
<td>9</td>
<td>smartPAD plugged in (B) 24 V</td>
</tr>
<tr>
<td>5</td>
<td>24 V PS2</td>
</tr>
<tr>
<td>6</td>
<td>GND</td>
</tr>
</tbody>
</table>
8.4 Connecting the equipotential bonding (PE)

Procedure
1. Route and connect a 4 mm² cable as equipotential bonding between the manipulator and the robot controller at the installation site. (>>> 6.10 "PE equipotential bonding" Page 71)
   - Route the equipotential bonding by the shortest route from the robot controller to the manipulator.
2. Ground the robot controller at the installation site.
3. Carry out a ground conductor check for the entire robot system in accordance with EN 60204-1.

8.5 Connecting the robot controller to the power supply

8.6 Reversing the battery discharge protection measures

Description
To prevent the batteries from discharging before the controller has been started up for the first time, the robot controller is supplied with connector X305 disconnected from the CCU_SR.

Procedure
- Plug connector X305 into the CCU_SR.

Fig. 8-1: Battery discharge protection X305

1 Connector X305 on the CCU_SR

8.7 Configuring and connecting connector X11

Precondition
- The robot controller is switched off.

Procedure
1. Configure connector X11 in accordance with the system and safety concepts. (>>> 6.5.1 "X11 safety interface" Page 55)
2. Connect interface connector X11 to the robot controller.

Notice: Connector X11 may only be plugged in or unplugged when the robot controller is switched off. If connector X11 is plugged in or unplugged when energized, damage to property may occur.
8.8 Switching on the robot controller

Preconditions
- The manipulator has been installed in accordance with the operating instructions.
- All electrical connections are correct and the energy levels are within the specified limits.
- The housing of the robot controller must be closed.
- The peripheral devices are correctly connected.
- It must be ensured that no persons or objects are present within the danger zone of the manipulator.
- All safety devices and protective measures are complete and fully functional.
- The internal temperature of the robot controller must have adapted to the ambient temperature.

Procedure
1. Release the E-STOP device on the smartPAD.
2. Switch on the main switch.
   - The control PC begins to run up (load) the operating system and the control software.

   Information about operator control of the manipulator using the smartPAD can be found in the operating and programming instructions for the KUKA System Software.
9 KUKA Service

9.1 Requesting support

Introduction This documentation provides information on operation and operator control, and provides assistance with troubleshooting. For further assistance, please contact your local KUKA subsidiary.

Information The following information is required for processing a support request:

- Description of the problem, including information about the duration and frequency of the fault
- As comprehensive information as possible about the hardware and software components of the overall system

The following list gives an indication of the information which is relevant in many cases:

- Model and serial number of the kinematic system, e.g. the manipulator
- Model and serial number of the controller
- Model and serial number of the energy supply system
- Designation and version of the system software
- Designations and versions of other software components or modifications
- Diagnostic package KRCDiag
  Additionally for KUKA Sunrise: Existing projects including applications
  For versions of KUKA System Software older than V8: Archive of the software (KRCDiag is not yet available here.)
- Application used
- External axes used

9.2 KUKA Customer Support

Availability KUKA Customer Support is available in many countries. Please do not hesitate to contact us if you have any questions.

Argentina Ruben Costantini S.A. (Agency)
Luis Angel Huergo 13 20
Parque Industrial
2400 San Francisco (CBA)
Argentina
Tel. +54 3564 421033
Fax +54 3564 428877
ventas@costantini-sa.com

Australia KUKA Robotics Australia Pty Ltd
45 Fennell Street
Port Melbourne VIC 3207
Australia
Tel. +61 3 9939 9656
info@kuka-robotics.com.au
www.kuka-robotics.com.au
Belgium
KUKA Automatisering + Robots N.V.
Centrum Zuid 1031
3530 Houthalen
Belgium
Tel. +32 11 516160
Fax +32 11 526794
info@kuka.be
www.kuka.be

Brazil
KUKA Roboter do Brasil Ltda.
Travessa Claudio Armando, nº 171
Bloco 5 - Galpões 51/52
Bairro Assunção
CEP 09861-7630 São Bernardo do Campo - SP
Brazil
Tel. +55 11 4942-8299
Fax +55 11 2201-7883
info@kuka-roboter.com.br
www.kuka-roboter.com.br

Chile
Robotec S.A. (Agency)
Santiago de Chile
Chile
Tel. +56 2 331-5951
Fax +56 2 331-5952
robotec@robotec.cl
www.robotec.cl

China
KUKA Robotics China Co., Ltd.
No. 889 Kungang Road
Xiaokunshan Town
Songjiang District
201614 Shanghai
P. R. China
Tel. +86 21 5707 2688
Fax +86 21 5707 2603
info@kuka-robotics.cn
www.kuka-robotics.com

Germany
KUKA Deutschland GmbH
Zugspitzstr. 140
86165 Augsburg
Germany
Tel. +49 821 797-1926
Fax +49 821 797-41 1926
Hotline.robotics.de@kuka.com
www.kuka.com
France
KUKA Automatisme + Robotique SAS
Techvallée
6, Avenue du Parc
91140 Villebon S/Yvette
France
Tel. +33 1 6931660-0
Fax +33 1 6931660-1
commercial@kuka.fr
www.kuka.fr

India
KUKA Robotics India Pvt. Ltd.
Office Number-7, German Centre,
Level 12, Building No. - 9B
DLF Cyber City Phase III
122 002 Gurgaon
Haryana
India
Tel. +91 124 4635774
Fax +91 124 4635773
info@kuka.in
www.kuka.in

Italy
KUKA Roboter Italia S.p.A.
Via Pavia 9/a - int.6
10098 Rivoli (TO)
Italy
Tel. +39 011 959-5013
Fax +39 011 959-5141
kuka@kuka.it
www.kuka.it

Japan
KUKA Japan K.K.
YBP Technical Center
134 Godo-cho, Hodogaya-ku
Yokohama, Kanagawa
240 0005
Japan
Tel. +81 45 744 7531
Fax +81 45 744 7541
info@kuka.co.jp

Canada
KUKA Robotics Canada Ltd.
6710 Maritz Drive - Unit 4
Mississauga
L5W 0A1
Ontario
Canada
Tel. +1 905 670-8600
Fax +1 905 670-8604
info@kukarobotics.com
www.kuka-robotics.com/canada
Korea
KUKA Robotics Korea Co. Ltd.
RIT Center 306, Gyeonggi Technopark
1271-11 Sa 3-dong, Sangnok-gu
Ansan City, Gyeonggi Do
426-901 Korea
Tel. +82 31 501-1451
Fax +82 31 501-1461
info@kukakorea.com

Malaysia
KUKA Robot Automation (M) Sdn Bhd
South East Asia Regional Office
No. 7, Jalan TPP 6/6
Taman Perindustrian Puchong
47100 Puchong
Selangor
Malaysia
Tel. +60 (03) 8063-1792
Fax +60 (03) 8060-7386
info@kuka.com.my

Mexico
KUKA de México S. de R.L. de C.V.
Progreso #8
Col. Centro Industrial Puente de Vagas
Tlalnepantla de Baz
54020 Estado de México
Mexico
Tel. +52 55 5203-8407
Fax +52 55 5203-8148
info@kuka.com.mx
www.kuka-robotics.com/mexico

Norway
KUKA Sveisearlegg + Roboter
Sentrumsvegen 5
2867 Hov
Norway
Tel. +47 61 18 91 30
Fax +47 61 18 62 00
info@kuka.no

Austria
KUKA Roboter CEE GmbH
Gruberstraße 2-4
4020 Linz
Austria
Tel. +43 7 32 78 47 52
Fax +43 7 32 79 38 80
office@kuka-roboter.at
www.kuka.at
Poland
KUKA Roboter CEE GmbH Poland
Spółka z ograniczoną odpowiedzialnością
Oddział w Polsce
Ul. Porcelanowa 10
40-246 Katowice
Poland
Tel. +48 327 30 32 13 or -14
Fax +48 327 30 32 26
ServicePL@kuka-roboter.de

Portugal
KUKA Robots IBÉRICA, S.A.
Rua do Alto da Guerra nº 50
Armazém 04
2910 011 Setúbal
Portugal
Tel. +351 265 729 780
Fax +351 265 729 782
info.portugal@kukapt.com
www.kuka.com

Russia
KUKA Russia OOO
1-y Nagatinskiy pr-d, 2
117105 Moskau
Russia
Tel. +7 495 665-6241
support.robotics.ru@kuka.com

Sweden
KUKA Svetsanläggningar + Robotar AB
A. Odhners gata 15
421 30 Västra Frölunda
Sweden
Tel. +46 31 7266-200
Fax +46 31 7266-201
info@kuka.se

Switzerland
KUKA Roboter Schweiz AG
Industriestr. 9
5432 Neuenhof
Switzerland
Tel. +41 44 74490-90
Fax +41 44 74490-91
info@kuka-roboter.ch
www.kuka-roboter.ch

Slovakia
KUKA Roboter CEE GmbH
organizačná zložka
Bojnická 3
831 04 Bratislava
Slovakia
Tel. +420 226 212 273
support.robotics.cz@kuka.com
Spain
KUKA Iberia, S.A.U.
Pol. Industrial
Torrent de la Pastera
Carrer del Bages s/n
08800 Vilanova i la Geltrú (Barcelona)
Spain
Tel. +34 93 8142-353
comercial@kukarob.es

South Africa
Jendamark Automation LTD (Agency)
76a York Road
North End
6000 Port Elizabeth
South Africa
Tel. +27 41 391 4700
Fax +27 41 373 3869
www.jendamark.co.za

Taiwan
KUKA Automation Taiwan Co. Ltd.
1F, No. 298 Yangguang ST.,
Nei Hu Dist., Taipei City, Taiwan 114
Taiwan
Tel. +886 2 8978 1188
Fax +886 2 8797 5118
info@kuka.com.tw

Thailand
KUKA (Thailand) Co. Ltd.
No 22/11-12 H-Cape Biz Sector Onnut
Sukhaphiban 2 road, Prawet
Bangkok 10250
Thailand
Tel. +66 (0) 90-940-8950
HelpdeskTH@kuka.com

Czech Republic
KUKA Roboter CEE GmbH
organizační složka
Pražská 239
25066 Zdiřby
Czech Republic
Tel. +420 226 212 273
support.robotics.cz@kuka.com

Hungary
KUKA Robotics Hungaria Kft.
Fő út 140
2335 Taksony
Hungary
Tel. +36 24 501609
Fax +36 24 477031
info@kukarobotics.hu
USA
KUKA Robotics Corporation
51870 Shelby Parkway
Shelby Township
48315-1787
Michigan
USA
Tel. +1 866 873-5852
Fax +1 866 329-5852
info@kukarobotics.com
www.kukarobotics.com

UK
KUKA Robotics UK Ltd
Great Western Street
Wednesbury West Midlands
WS10 7LL
UK
Tel. +44 121 505 9970
Fax +44 121 505 6589
service@kuka-robotics.co.uk
www.kuka-robotics.co.uk
Index

Numbers
19" rack 53, 77
2006/42/EU 50
2014/30/EU 50
2014/68/EU 50
95/16/EC 50

A
Accessories 11, 27
Altitude 21
Ambient temperature 21
ANSI/RIA R.15.06-2012 51
Applied norms and regulations 50
Automatic mode 47
Axis limitation, mechanical 38
Axis range 28

B
Basic data 21
Batteries 14
Battery discharge protection, reversing 78
Brake defect 40
Brake release device 39
Braking distance 28

C
Cabinet Control Unit, Small Robot 13
Cabinet Interface Board, Small Robot 13, 23
Cable lengths 22, 54
CCU_SR 8, 13
CCU_SR functions 13
CE mark 28
Charge 14
CIB_SR 8, 23
CIB_SR inputs 24
CIB_SR outputs 23
CIB_SR, safe input 59
CIB_SR, safe output 61
CIP Safety 8
Cleaning work 48
Connecting cables 11, 27, 77
Connection conditions 54
Connection panel 11
Control box 12
Control PC 11, 12
Control PC, functions 13
Control unit 22
Cooling 20
Cooling circuit 20
Counterbalancing system 48

D
Danger zone 28
DC 14
Declaration of conformity 28
Declaration of incorporation 27, 28
Decommissioning 49
Description of the industrial robot 11
Device connection cable 15
Dimensions 22
Dimensions, handle brackets 25
Dimensions, smartPAD holder 24
Disposal 49
Documentation, industrial robot 7
Drive box 14
Drive Configuration 14
Dual NIC card 8
Dynamic testing 60

E
EA 8
EC declaration of conformity 28
EDS 8
Electromagnetic compatibility (EMC) 51
Electromagnetic compatibility, EMC 53
EMC 8
EMC Directive 28, 50
EMD 8
EMERGENCY STOP device 35, 36, 40
EMERGENCY STOP devices to X11 58
EMERGENCY STOP wiring example 58
EMERGENCY STOP, external 36, 43
EMERGENCY STOP, local 43
EN 60204-12006/A12009 51
EN 61000-6-22005 51
EN 61000-6-42007 + A12011 51
EN 614-12006+A12009 51
EN ISO 10218-12011 51
EN ISO 121002010 51
EN ISO 13849-12015 50
EN ISO 13849-22012 50
EN ISO 138502015 50
Enabling device 36, 40
Enabling device, external 37
Enabling switches 36, 65
Environmental conditions 21
Equipotential bonding, connecting 78
EtherCAT interface X65 70
Exhaustive discharge, battery 21
External axes 27, 30
External enabling switch, function 57

F
Faults 41
Filter mats 20
Function test 42
Fusing 55

G
General safety measures 40

H
Hazardous substances 48
Humidity class 21
Index

Safety STOP 0 29
Safety STOP 1 29
Safety STOP 2 29
Safety STOP 0 29
Safety STOP 1 29
Safety STOP 2 29
Safety stop, external 37
Safety zone 29, 31
Safety, general 27
SATA connections 8
Selecting the operating mode 32, 33
Service life 29
Signal “Peri enabled” 57
Simulation 47
Single point of control 49
Slot assignment, motherboard D3076-K 17
Slot assignment, motherboard D3236-K 18
Slot assignment, motherboard D3445-K 19
smartPAD 29, 41
smartPAD cable 15
smartPAD cable extensions 22, 54
smartPAD, plugging in 77
Software 11, 27
Software limit switches 38, 40
SPOC 49
Start-up 42, 77
Start-up mode 45
STOP 0 28, 29
STOP 1 28, 30
STOP 2 28, 30
Stop category 0 29
Stop category 1 30
Stop category 2 30
Stop category 1, Drive Ramp Stop 30
Stop reactions 32
STOP 1 - DRS 30
Stopping distance 28, 31
Storage 49
Support request 81
Switching on the robot controller 79
System integrator 28, 30, 31

T
T1 (operating mode) 30
T2 (operating mode) 30
Target group 9
Teach pendant 11, 27
Technical data 21
Terms used 8
Terms used, safety 28
Test output A 55
Test output B 55
Trademarks 7
Training 9
Transportation 41, 75
Turn-tilt table 27

U
US2 45
USB 8
Use, contrary to intended use 27

Use, improper 27
User 28, 30

V
Velocity monitoring 37
Vibration resistance 22

W
Warnings 7
Workspace 28, 31

X
X11, configuring and connecting 78
X11, connector pin allocation 55
X11, safety interface 55
X65, connector pin allocation 70
X65, EtherCAT 70
X69, KSI 71
