This documentation or excerpts therefrom may not be reproduced or disclosed to third parties without the express permission of KUKA Deutschland GmbH.

Other functions not described in this documentation may be operable in the controller. The user has no claims to these functions, however, in the case of a replacement or service work.

We have checked the content of this documentation for conformity with the hardware and software described. Nevertheless, discrepancies cannot be precluded, for which reason we are not able to guarantee total conformity. The information in this documentation is checked on a regular basis, however, and necessary corrections will be incorporated in the subsequent edition.

Subject to technical alterations without an effect on the function.

KIM-PS5-DOC
Translation of the original documentation

Publication: Pub Spez KR QUANTEC-2 (PDF) en PB12794
Book structure: Spez KR QUANTEC-2 V1.1 BS11863
Version: Spez KR QUANTEC-2 V1
Contents

1. Introduction
 1.1 Industrial robot documentation
 1.2 Representation of warnings and notes

2. Purpose
 2.1 Target group
 2.2 Intended use

3. Product description
 3.1 Overview of the robot system
 3.2 Description of the manipulator

4. Technical data
 4.1 Basic data overview
 4.2 Axis data overview
 4.3 Payloads overview
 4.4 Foundation loads overview
 4.5 Plates and labels
 4.6 REACH duty to communicate information acc. to Art. 33 of Regulation (EC) 1907/2006
 4.7 Stopping distances and times
 4.7.1 General information
 4.7.2 Terms used
 4.7.3 Stopping distances and stopping times, KR 120 R2700-2
 4.7.3.1 Stopping distances and stopping times for STOP 0, axis 1 to axis 3
 4.7.3.2 Stopping distances and stopping times for STOP 1, axis 1
 4.7.3.3 Stopping distances and stopping times for STOP 1, axis 2
 4.7.3.4 Stopping distances and stopping times for STOP 1, axis 3
 4.7.4 Stopping distances and times, KR 120 R3100-2
 4.7.4.1 Stopping distances and stopping times for STOP 0, axis 1 to axis 3
 4.7.4.2 Stopping distances and stopping times for STOP 1, axis 1
 4.7.4.3 Stopping distances and stopping times for STOP 1, axis 2
 4.7.4.4 Stopping distances and stopping times for STOP 1, axis 3
 4.7.5 Stopping distances and times, KR 150 R2700-2
 4.7.5.1 Stopping distances and stopping times for STOP 0, axis 1 to axis 3
 4.7.5.2 Stopping distances and stopping times for STOP 1, axis 1
 4.7.5.3 Stopping distances and stopping times for STOP 1, axis 2
 4.7.5.4 Stopping distances and stopping times for STOP 1, axis 3
 4.7.6 Stopping distances and times, KR 150 R3100-2
 4.7.6.1 Stopping distances and stopping times for STOP 0, axis 1 to axis 3
 4.7.6.2 Stopping distances and stopping times for STOP 1, axis 1
 4.7.6.3 Stopping distances and stopping times for STOP 1, axis 2
 4.7.6.4 Stopping distances and stopping times for STOP 1, axis 3
 4.7.7 Stopping distances and times, KR 210 R2700-2
 4.7.7.1 Stopping distances and stopping times for STOP 0, axis 1 to axis 3
 4.7.7.2 Stopping distances and stopping times for STOP 1, axis 1
 4.7.7.3 Stopping distances and stopping times for STOP 1, axis 2

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.7.7.4</td>
<td>Stopping distances and stopping times for STOP 1, axis 3</td>
<td>78</td>
</tr>
<tr>
<td>4.7.8</td>
<td>Stopping distances and times, KR 250 R2700-2</td>
<td>78</td>
</tr>
<tr>
<td>4.7.8.1</td>
<td>Stopping distances and stopping times for STOP 0, axis 1 to axis 3</td>
<td>78</td>
</tr>
<tr>
<td>4.7.8.2</td>
<td>Stopping distances and stopping times for STOP 1, axis 1</td>
<td>79</td>
</tr>
<tr>
<td>4.7.8.3</td>
<td>Stopping distances and stopping times for STOP 1, axis 2</td>
<td>81</td>
</tr>
<tr>
<td>4.7.8.4</td>
<td>Stopping distances and stopping times for STOP 1, axis 3</td>
<td>83</td>
</tr>
<tr>
<td>4.7.9</td>
<td>Stopping distances and times, KR 300 R2700-2</td>
<td>83</td>
</tr>
<tr>
<td>4.7.9.1</td>
<td>Stopping distances and stopping times for STOP 0, axis 1 to axis 3</td>
<td>83</td>
</tr>
<tr>
<td>4.7.9.2</td>
<td>Stopping distances and stopping times for STOP 1, axis 1</td>
<td>84</td>
</tr>
<tr>
<td>4.7.9.3</td>
<td>Stopping distances and stopping times for STOP 1, axis 2</td>
<td>86</td>
</tr>
<tr>
<td>4.7.9.4</td>
<td>Stopping distances and stopping times for STOP 1, axis 3</td>
<td>88</td>
</tr>
<tr>
<td>5</td>
<td>Safety</td>
<td>89</td>
</tr>
<tr>
<td>5.1</td>
<td>General</td>
<td>89</td>
</tr>
<tr>
<td>5.1.1</td>
<td>Liability</td>
<td>89</td>
</tr>
<tr>
<td>5.1.2</td>
<td>Intended use of the industrial robot</td>
<td>90</td>
</tr>
<tr>
<td>5.1.3</td>
<td>EC declaration of conformity and declaration of incorporation</td>
<td>90</td>
</tr>
<tr>
<td>5.1.4</td>
<td>Terms used</td>
<td>91</td>
</tr>
<tr>
<td>5.2</td>
<td>Personnel</td>
<td>92</td>
</tr>
<tr>
<td>5.3</td>
<td>Workspace, safety zone and danger zone</td>
<td>93</td>
</tr>
<tr>
<td>5.4</td>
<td>Overview of protective equipment</td>
<td>93</td>
</tr>
<tr>
<td>5.4.1</td>
<td>Mechanical end stops</td>
<td>94</td>
</tr>
<tr>
<td>5.4.2</td>
<td>Mechanical axis limitation (optional)</td>
<td>94</td>
</tr>
<tr>
<td>5.4.3</td>
<td>Options for moving the manipulator without drive energy</td>
<td>94</td>
</tr>
<tr>
<td>5.4.4</td>
<td>Labeling on the industrial robot</td>
<td>95</td>
</tr>
<tr>
<td>5.5</td>
<td>Safety measures</td>
<td>95</td>
</tr>
<tr>
<td>5.5.1</td>
<td>General safety measures</td>
<td>95</td>
</tr>
<tr>
<td>5.5.2</td>
<td>Transportation</td>
<td>97</td>
</tr>
<tr>
<td>5.5.3</td>
<td>Start-up and recommissioning</td>
<td>97</td>
</tr>
<tr>
<td>5.5.4</td>
<td>Manual mode</td>
<td>98</td>
</tr>
<tr>
<td>5.5.5</td>
<td>Automatic mode</td>
<td>99</td>
</tr>
<tr>
<td>5.5.6</td>
<td>Maintenance and repair</td>
<td>99</td>
</tr>
<tr>
<td>5.5.7</td>
<td>Decommissioning, storage and disposal</td>
<td>101</td>
</tr>
<tr>
<td>5.6</td>
<td>Applied norms and regulations</td>
<td>101</td>
</tr>
<tr>
<td>6</td>
<td>Planning</td>
<td>103</td>
</tr>
<tr>
<td>6.1</td>
<td>Information for planning</td>
<td>103</td>
</tr>
<tr>
<td>6.2</td>
<td>Mounting base with centering</td>
<td>103</td>
</tr>
<tr>
<td>6.3</td>
<td>Machine frame mounting</td>
<td>106</td>
</tr>
<tr>
<td>6.4</td>
<td>Connecting cables and interfaces</td>
<td>107</td>
</tr>
<tr>
<td>7</td>
<td>Transportation</td>
<td>111</td>
</tr>
<tr>
<td>7.1</td>
<td>Transporting the robot</td>
<td>111</td>
</tr>
<tr>
<td>8</td>
<td>KUKA Service</td>
<td>115</td>
</tr>
<tr>
<td>8.1</td>
<td>Requesting support</td>
<td>115</td>
</tr>
<tr>
<td>8.2</td>
<td>KUKA Customer Support</td>
<td>115</td>
</tr>
</tbody>
</table>

Index | 123
1 Introduction

1.1 Industrial robot documentation

The industrial robot documentation consists of the following parts:

• Documentation for the robot arm
• Documentation for the robot controller
• Documentation for the smartPAD-2
• Operating and programming instructions for the System Software
• Instructions for options and accessories
• Spare parts in KUKA.Xpert

Each of these sets of instructions is a separate document.

1.2 Representation of warnings and notes

Safety

These warnings are provided for safety purposes and must be observed.

⚠️ DANGER
These warnings mean that it is certain or highly probable that death or severe injuries will occur, if no precautions are taken.

⚠️ WARNING
These warnings mean that death or severe injuries may occur, if no precautions are taken.

⚠️ CAUTION
These warnings mean that minor injuries may occur, if no precautions are taken.

⚠️ NOTICE
These warnings mean that damage to property may occur, if no precautions are taken.

These warnings contain references to safety-relevant information or general safety measures. These warnings do not refer to individual hazards or individual precautionary measures.

This warning draws attention to procedures which serve to prevent or remedy emergencies or malfunctions:

⚠️ SAFETY INSTRUCTION
The following procedure must be followed exactly!

Procedures marked with this warning must be followed exactly.

Notices

These notices serve to make your work easier or contain references to further information.

ℹ️ Tip to make your work easier or reference to further information.
2 Purpose

2.1 Target group

This documentation is aimed at users with the following knowledge and skills:

- Advanced knowledge of mechanical engineering
- Advanced knowledge of electrical engineering
- Knowledge of the robot controller system

For optimal use of our products, we recommend that our customers take part in a course of training at KUKA College. Information about the training program can be found at www.kuka.com or can be obtained directly from our subsidiaries.

2.2 Intended use

Use

The industrial robot is intended for handling tools and fixtures or for processing and transferring components or products. Use is only permitted under the specified environmental conditions.

Misuse

Any use or application deviating from the intended use is deemed to be misuse and is not allowed. This includes e.g.:

- Use as a climbing aid
- Operation outside the specified operating parameters
- Operation without the required safety equipment

NOTICE

Changing the structure of the robot, e.g. by drilling holes, can result in damage to the components. This is considered improper use and leads to loss of guarantee and liability entitlements.

NOTICE

Deviations from the operating conditions specified in the technical data or the use of special functions or applications can lead to premature wear. KUKA Deutschland GmbH must be consulted.

The robot system is an integral part of a complete system and may only be operated in a CE-compliant system.
3 Product description

3.1 Overview of the robot system

A robot system (Fig. 3-1) comprises all the assemblies of an industrial robot, including the manipulator (mechanical system and electrical installations), robot controller, connecting cables, tool and other equipment. The Product Family KR QUANTEC-2 comprises the robot types:

- KR 120 R2700-2
- KR 120 R3100-2
- KR 150 R2700-2
- KR 150 R3100-2
- KR 210 R2700-2
- KR 250 R2700-2
- KR 300 R2700-2

An industrial robot of this product family comprises the following components:

- Manipulator
- Robot controller
- Connecting cables
- Teach pendant (KUKA smartPAD)
- Software
- Options, accessories

Fig. 3-1: Example of an industrial robot

1 Manipulator
2 Connecting cables
3 Robot controller
4 Teach pendant, KUKA smartPAD
3.2 Description of the manipulator

Overview

The manipulators (= robot arm and electrical installations) of the variants are designed as 6-axis jointed-arm kinematic systems. They consist of the following main assemblies:

- In-line wrist
- Arm
- Link arm
- Counterbalancing system
- Rotating column
- Base frame
- Electrical installations

DANGER
Axes 1 to 3 are equipped with end stops. These serve exclusively as machine protection.
The following options are available for personnel protection:
- The Safe Robot functionality of the controller
- Mechanical axis limitations for axes A1, A2 and A3

In-line wrist

The robot is fitted with a 3-axis in-line wrist. The in-line wrist contains axes 4, 5 and 6. The motor of axis 6 is located directly on the wrist, inside the arm. It drives the wrist directly, while for axes 4 and 5 the drive comes from the rear of the arm via connecting shafts. For attaching end effectors (tools), the in-line wrist has a mounting flange.
Arm

The arm is the link between the in-line wrist and the link arm. It houses the motors of wrist axes 4 and 5. The arm is driven by the motor of axis 3. The maximum permissible swivel angle is mechanically limited by an overrun safeguard for each direction, plus and minus. There is an interface on the arm for fastening supplementary loads.

Link arm

The link arm is the assembly located between the arm and the rotating column. The maximum permissible swivel angle is mechanically limited by an overrun safeguard for each direction, plus and minus. There is an interface on the link arm for fastening supplementary loads.

Rotating column

The rotating column houses the motors of axes 1 and 2. The rotational motion of axis 1 is performed by the rotating column. The rotating column also supports the link arm. The bearings of the counterbalancing system are situated at the rear. There is also an interface for fastening supplementary loads on the rotating column.

Base frame

The base frame is the base of the robot. It is screwed to the mounting base. The electrical installations are fastened in the base frame. Also located on the base frame is the interface for the motor and data cable and the energy supply system.

Counterbalancing system

The counterbalancing system is installed between the rotating column and the link arm and serves to minimize the moments generated about axis 2 when the robot is in motion and at rest. A closed, hydropneumatic system is used. The system consists of two accumulators, a hydraulic cylinder with associated hoses, a pressure gauge and a bursting disc as a safety element to protect against overfilling. The counterbalancing system is classified below category I, fluid group 2, of the Pressure Equipment Directive.

Electrical installations

The electrical installations include all the motor and control cables for the motors of axes 1 to 6. All connections are implemented as connectors in order to enable the motors to be exchanged quickly and reliably. The electrical installations also include the RDC box and the split hood housing. The RDC box is located in the rotating column. The split hood housing and the connector for the data cables are mounted on the robot base frame. The connecting cables from the robot controller are connected here by means of connectors. The electrical installations also include a protective circuit.

Options

The robot can be fitted and operated with various options, e.g.:

- Energy supply systems A1 to A3
- Energy supply systems A3 to A6
- Axis limitations for axes A1, A2 and A3
- Mounting flange (adapter)

The options are described in separate documentation.
4 Technical data

4.1 Basic data overview

Basic data

<table>
<thead>
<tr>
<th>Kinematic type</th>
<th>Number of axes</th>
<th>Rated payload</th>
<th>Maximum payload</th>
</tr>
</thead>
<tbody>
<tr>
<td>KR 120 R2700-2</td>
<td>6</td>
<td>120 kg</td>
<td>165 kg</td>
</tr>
<tr>
<td>KR 120 R3100-2</td>
<td></td>
<td>210 kg</td>
<td></td>
</tr>
<tr>
<td>KR 150 R2700-2</td>
<td>6</td>
<td>150 kg</td>
<td>215 kg</td>
</tr>
<tr>
<td>KR 150 R3100-2</td>
<td></td>
<td>215 kg</td>
<td></td>
</tr>
<tr>
<td>KR 210 R2700-2</td>
<td>6</td>
<td>210 kg</td>
<td>270 kg</td>
</tr>
<tr>
<td>KR 250 R2700-2</td>
<td></td>
<td>250 kg</td>
<td>300 kg</td>
</tr>
<tr>
<td>KR 300 R2700-2</td>
<td></td>
<td>300 kg</td>
<td>365 kg</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maximum reach</th>
<th>Volume of working envelope</th>
<th>Pose repeatability (ISO 9283)</th>
<th>Footprint</th>
</tr>
</thead>
<tbody>
<tr>
<td>KR 120 R2700-2</td>
<td>2701 mm</td>
<td>56.3 m³</td>
<td></td>
</tr>
<tr>
<td>KR 120 R3100-2</td>
<td>3100 mm</td>
<td>86.3 m³</td>
<td></td>
</tr>
<tr>
<td>KR 150 R2700-2</td>
<td>2701 mm</td>
<td>56.3 m³</td>
<td></td>
</tr>
<tr>
<td>KR 150 R3100-2</td>
<td>3100 mm</td>
<td>86.3 m³</td>
<td>± 0.05 mm</td>
</tr>
<tr>
<td>KR 210 R2700-2</td>
<td>2701 mm</td>
<td>56.3 m³</td>
<td>754 mm x 754 mm</td>
</tr>
<tr>
<td>KR 250 R2700-2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KR 300 R2700-2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Weight</th>
<th>Protection rating (IEC 60529)</th>
<th>Protection rating, in-line wrist (IEC 60529)</th>
<th>Sound level</th>
</tr>
</thead>
<tbody>
<tr>
<td>KR 120 R2700-2</td>
<td>approx. 1069 kg</td>
<td>IP65</td>
<td>< 75 dB (A)</td>
</tr>
<tr>
<td>KR 120 R3100-2</td>
<td>approx. 1105 kg</td>
<td>IP65 / IP67</td>
<td></td>
</tr>
<tr>
<td>KR 150 R2700-2</td>
<td>approx. 1072 kg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KR 150 R3100-2</td>
<td>approx. 1105 kg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KR 210 R2700-2</td>
<td>approx. 1077 kg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KR 250 R2700-2</td>
<td>approx. 1101 kg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KR 300 R2700-2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ambient conditions

- Humidity class (EN 60204) -
- Classification of environmental conditions (EN 60721-3-3) -
- Ambient temperature
 - During operation 0 °C to 55 °C (273 K to 328 K)
 - During storage/transportation -40 °C to 60 °C (233 K to 333 K)
For operation at low temperatures, it may be necessary to warm up the robot.

Connecting cables

<table>
<thead>
<tr>
<th>Cable designation</th>
<th>Connector designation robot controller - robot</th>
<th>Interface with robot</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor cable</td>
<td>X20 - X30</td>
<td>Connectors at both ends</td>
</tr>
<tr>
<td>Control cable</td>
<td>X21 - X31</td>
<td>Rectangular connector at both ends</td>
</tr>
<tr>
<td>Ground conductor, equipotential bonding</td>
<td></td>
<td>Ring cable lug at both ends</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cable lengths</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard</td>
</tr>
<tr>
<td>7 m, 10 m, 15 m, 20 m, 25 m, 30 m, 35 m, 50 m</td>
</tr>
</tbody>
</table>

For further connecting cables and detailed specifications, see .

For detailed specifications of the connecting cables, see “Description of the connecting cables”.

4.2 Axis data overview

Motion range

<table>
<thead>
<tr>
<th>Motion range</th>
<th>A1</th>
<th>A2</th>
<th>A3</th>
<th>A4</th>
<th>A5</th>
<th>A6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Designation: KR 120 R2700-2</td>
<td>±185 °</td>
<td>-140 ° / -5 °</td>
<td>-120 ° / 168 °</td>
<td>±350 °</td>
<td>±125 °</td>
<td>±350 °</td>
</tr>
<tr>
<td>±185 °</td>
<td>-140 ° / -5 °</td>
<td>-120 ° / 168 °</td>
<td>±350 °</td>
<td>±125 °</td>
<td>±350 °</td>
<td></td>
</tr>
<tr>
<td>Designation: KR 150 R2700-2</td>
<td>±185 °</td>
<td>-140 ° / -5 °</td>
<td>-120 ° / 168 °</td>
<td>±350 °</td>
<td>±125 °</td>
<td>±350 °</td>
</tr>
<tr>
<td>±185 °</td>
<td>-140 ° / -5 °</td>
<td>-120 ° / 168 °</td>
<td>±350 °</td>
<td>±125 °</td>
<td>±350 °</td>
<td></td>
</tr>
<tr>
<td>Designation: KR 210 R2700-2</td>
<td>±185 °</td>
<td>-140 ° / -5 °</td>
<td>-120 ° / 168 °</td>
<td>±350 °</td>
<td>±125 °</td>
<td>±350 °</td>
</tr>
<tr>
<td>±185 °</td>
<td>-140 ° / -5 °</td>
<td>-120 ° / 168 °</td>
<td>±350 °</td>
<td>±125 °</td>
<td>±350 °</td>
<td></td>
</tr>
<tr>
<td>Designation: KR 250 R2700-2</td>
<td>±185 °</td>
<td>-140 ° / -5 °</td>
<td>-120 ° / 168 °</td>
<td>±350 °</td>
<td>±122.5 °</td>
<td>±350 °</td>
</tr>
<tr>
<td>±185 °</td>
<td>-140 ° / -5 °</td>
<td>-120 ° / 168 °</td>
<td>±350 °</td>
<td>±122.5 °</td>
<td>±350 °</td>
<td></td>
</tr>
</tbody>
</table>

Speed with rated payload

<table>
<thead>
<tr>
<th>Speed with rated payload</th>
<th>A1</th>
<th>A2</th>
<th>A3</th>
<th>A4</th>
<th>A5</th>
<th>A6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Designation: KR 120 R2700-2</td>
<td>120 °/s</td>
<td>115 °/s</td>
<td>120 °/s</td>
<td>190 °/s</td>
<td>180 °/s</td>
<td>260 °/s</td>
</tr>
<tr>
<td>Designation: KR 120 R3100-2</td>
<td>120 °/s</td>
<td>115 °/s</td>
<td>120 °/s</td>
<td>190 °/s</td>
<td>180 °/s</td>
<td>260 °/s</td>
</tr>
</tbody>
</table>
Speed with rated payload

<table>
<thead>
<tr>
<th></th>
<th>A1</th>
<th>A2</th>
<th>A3</th>
<th>A4</th>
<th>A5</th>
<th>A6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Designation: KR 150 R2700-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>120 °/s</td>
<td>115 °/s</td>
<td>120 °/s</td>
<td>190 °/s</td>
<td>180 °/s</td>
<td>260 °/s</td>
<td></td>
</tr>
<tr>
<td>Designation: KR 150 R3100-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>105 °/s</td>
<td>107 °/s</td>
<td>114 °/s</td>
<td>190 °/s</td>
<td>180 °/s</td>
<td>260 °/s</td>
<td></td>
</tr>
<tr>
<td>Designation: KR 210 R2700-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>120 °/s</td>
<td>115 °/s</td>
<td>112 °/s</td>
<td>179 °/s</td>
<td>172 °/s</td>
<td>220 °/s</td>
<td></td>
</tr>
<tr>
<td>Designation: KR 250 R2700-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>105 °/s</td>
<td>107 °/s</td>
<td>107 °/s</td>
<td>170 °/s</td>
<td>129 °/s</td>
<td>206 °/s</td>
<td></td>
</tr>
<tr>
<td>Designation: KR 300 R2700-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>105 °/s</td>
<td>101 °/s</td>
<td>107 °/s</td>
<td>140 °/s</td>
<td>113 °/s</td>
<td>180 °/s</td>
<td></td>
</tr>
</tbody>
</table>

The direction of motion and the arrangement of the individual axes may be noted from the following diagram (Fig. 4-1).

![Fig. 4-1: Direction of rotation of the axes](image)

Working envelope

The following diagrams show the shape and size of the working envelope for these variants of this product family.

The reference point for the working envelope is the intersection of axes 4 and 5.
Working envelope, KR 120 R2700-2

Dimensions: mm

Fig. 4-2: KR 120 R2700-2, working envelope, overall
Working envelope, KR 120 R3100-2

Fig. 4-3: KR 120 R3100-2, working envelope, overall
Working envelope, KR 150 R2700-2

Fig. 4-4: KR 150 R2700-2, working envelope, overall
Working envelope, KR 150 R3100-2

Fig. 4-5: KR 150 R3100-2, working envelope, overall
Working envelope, KR 210 R2700-2

Fig. 4-6: KR 210 R2700-2, working envelope, overall
Working envelope, KR 250 R2700-2

Fig. 4-7: KR 250 R2700-2, working envelope, overall
Working envelope, KR 300 R2700-2

Fig. 4-8: KR 300 R2700-2, working envelope, overall
4.3 Payloads overview

Payloads

<table>
<thead>
<tr>
<th>Model</th>
<th>Rated Payload</th>
<th>Maximum Payload</th>
<th>Rated Mass Moment of Inertia</th>
<th>Rated Total Load</th>
</tr>
</thead>
<tbody>
<tr>
<td>KR 120 R2700-2</td>
<td>120 kg</td>
<td>165 kg</td>
<td>60 kgm²</td>
<td>170 kg</td>
</tr>
<tr>
<td>KR 120 R3100-2</td>
<td>210 kg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KR 150 R2700-2</td>
<td>150 kg</td>
<td>215 kg</td>
<td>75 kgm²</td>
<td>200 kg</td>
</tr>
<tr>
<td>KR 150 R3100-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KR 210 R2700-2</td>
<td>210 kg</td>
<td>270 kg</td>
<td>105 kgm²</td>
<td>260 kg</td>
</tr>
<tr>
<td>KR 250 R2700-2</td>
<td>250 kg</td>
<td>300 kg</td>
<td>125 kgm²</td>
<td>300 kg</td>
</tr>
<tr>
<td>KR 250 R3100-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KR 300 R2700-2</td>
<td>300 kg</td>
<td>365 kg</td>
<td>150 kgm²</td>
<td>350 kg</td>
</tr>
<tr>
<td>KR 300 R3100-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Maximum supplementary loads

<table>
<thead>
<tr>
<th>Model</th>
<th>Base Frame</th>
<th>Rotating Column</th>
<th>Link Arm</th>
<th>Arm</th>
</tr>
</thead>
<tbody>
<tr>
<td>KR 120 R2700-2</td>
<td>0 kg</td>
<td>300 kg</td>
<td>130 kg</td>
<td>150 kg</td>
</tr>
<tr>
<td>KR 120 R3100-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KR 150 R2700-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KR 150 R3100-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KR 210 R2700-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KR 250 R2700-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KR 300 R2700-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KR 300 R3100-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Load center of gravity

For all payloads, the load center of gravity refers to the distance from the face of the mounting flange on axis 6.

![Load center of gravity diagram](image_url)

Fig. 4-9: Load center of gravity
Payload diagram, KR 120 R2700-2

Fig. 4-10: KR 120 R2700-2 payload diagram

Payload diagram, KR 120 R3100-2

Fig. 4-11: KR 120 R3100-2 payload diagram
Payload diagram, KR 150 R2700-2

Fig. 4-12: KR 150 R2700-2 payload diagram

Payload diagram, KR 150 R3100-2

Fig. 4-13: KR 150 R3100-2 payload diagram
Payload diagram, KR 210 R2700-2

![Payload diagram, KR 210 R2700-2](image1)

Fig. 4-14: KR 210 R2700-2 payload diagram

Payload diagram, KR 250 R2700-2

![Payload diagram, KR 250 R2700-2](image2)

Fig. 4-15: KR 250 R2700-2 payload diagram
Payload diagram, KR 300 R2700-2

Fig. 4-16: KR 300 R2700-2 payload diagram

NOTICE

This loading curve corresponds to the maximum load capacity. Both values (payload and mass moment of inertia) must be checked in all cases. Exceeding this capacity will reduce the service life of the robot and overload the motors and the gears; in any such case KUKA Deutschland GmbH must be consulted beforehand.

The values determined here are necessary for planning the robot application. For commissioning the robot, additional input data are required in accordance with the operating and programming instructions of the KUKA System Software.

The mass inertia must be verified using KUKA.Load. It is imperative for the load data to be entered in the robot controller!

The manipulator is designed for its respective rated payload in order to optimize the dynamic performance of the robot. With reduced load center distances, higher loads up to the maximum payload may be used. The specific load case must be verified using KUKA.Load. For further consultation, please contact KUKA Support.

Mounting flange D=125

<table>
<thead>
<tr>
<th>Designation</th>
<th>In-line wrist type</th>
<th>Mounting flange</th>
</tr>
</thead>
<tbody>
<tr>
<td>KR 120 R2700-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KR 120 R3100-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KR 150 R2700-2</td>
<td>ZH210</td>
<td>see drawing</td>
</tr>
<tr>
<td>KR 150 R3100-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KR 210 R2700-2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Mounting flange (hole circle) 125 mm
- Screw grade 10.9
- Screw size M10
- Number of fastening threads 11
- Depth of engagement min. 11.5 mm, max. 16 mm
The mounting flange is depicted (Fig. 4-17) with axes 4 and 6 in the zero position. The symbol X_m indicates the position of the locating element (bushing) in the zero position.

Fig. 4-17: Mounting flange D=125

<table>
<thead>
<tr>
<th>Mounting flange D=160</th>
</tr>
</thead>
<tbody>
<tr>
<td>Designation</td>
</tr>
<tr>
<td>KR 250 R2700-2</td>
</tr>
<tr>
<td>KR 300 R2700-2</td>
</tr>
</tbody>
</table>

Mounting flange (hole circle)	160 mm
Screw grade	10.9
Screw size	M10
Number of fastening threads	11
Depth of engagement	min. 15 mm, max. 19 mm
Locating element	10 H7
Standard	See diagram (Fig. 4-18)

The mounting flange is depicted with axes 4 and 6 in the zero position. The symbol X_m indicates the position of the locating element (bushing) in the zero position.
Flange loads

Due to the motion of the payload (e.g. tool) mounted on the robot, forces and torques act on the mounting flange. These forces and torques depend on the motion profile as well as the mass, load center of gravity and mass moment of inertia of the payload.

The specified values refer to nominal payloads and do not include safety factors. It is imperative for the load data to be entered in the robot controller. The robot controller takes the payload into consideration during path planning. A reduced payload does not necessarily result in lower forces and torques.

The values are guide values determined by means of trial and simulation and refer to the most heavily loaded machine in the robot family. The actual forces and torques may differ due to internal and external influences on the mounting flange or a different point of application. It is therefore advisable to determine the exact forces and torques where necessary on site under the real conditions of the actual robot application.

The operating values may occur permanently in the normal motion profile. It is advisable to rate the tool for its fatigue strength.

The EMERGENCY STOP values may arise in the event of an Emergency Stop situation of the robot. As these should only occur very rarely during the service life of the robot, a static strength verification is usually sufficient.

Fig. 4-18: Mounting flange D=160

Fig. 4-19: Flange loads
Axial force $F(a)$, radial force $F(r)$

<table>
<thead>
<tr>
<th>Flange loads during operation</th>
<th>Flange loads in the case of EMERGENCY STOP</th>
</tr>
</thead>
<tbody>
<tr>
<td>$F(a)$</td>
<td>$F(r)$</td>
</tr>
<tr>
<td>Designation: KR 120 R2700-2</td>
<td>4005 N</td>
</tr>
<tr>
<td>Designation: KR 120 R3100-2</td>
<td>4005 N</td>
</tr>
<tr>
<td>Designation: KR 150 R2700-2</td>
<td>4005 N</td>
</tr>
<tr>
<td>Designation: KR 150 R3100-2</td>
<td>4005 N</td>
</tr>
<tr>
<td>Designation: KR 210 R2700-2</td>
<td>4005 N</td>
</tr>
<tr>
<td>Designation: KR 250 R2700-2</td>
<td>5127 N</td>
</tr>
<tr>
<td>Designation: KR 300 R2700-2</td>
<td>5127 N</td>
</tr>
</tbody>
</table>

Tilting torque $M(k)$, torque about mounting flange $M(g)$

<table>
<thead>
<tr>
<th>Flange loads during operation</th>
<th>Flange loads in the case of EMERGENCY STOP</th>
</tr>
</thead>
<tbody>
<tr>
<td>$M(k)$</td>
<td>$M(g)$</td>
</tr>
<tr>
<td>Designation: KR 120 R2700-2</td>
<td>2343 Nm</td>
</tr>
<tr>
<td>Designation: KR 120 R3100-2</td>
<td>2343 Nm</td>
</tr>
<tr>
<td>Designation: KR 150 R2700-2</td>
<td>2343 Nm</td>
</tr>
<tr>
<td>Designation: KR 150 R3100-2</td>
<td>2343 Nm</td>
</tr>
<tr>
<td>Designation: KR 210 R2700-2</td>
<td>2343 Nm</td>
</tr>
<tr>
<td>Designation: KR 250 R2700-2</td>
<td>3410 Nm</td>
</tr>
<tr>
<td>Designation: KR 300 R2700-2</td>
<td>3410 Nm</td>
</tr>
</tbody>
</table>

Supplementary load

The robot can carry supplementary loads on the rotating column, link arm, arm and in-line wrist. When mounting the supplementary loads, be careful to observe the maximum permissible total load. The dimensions and positions of the installation options can be seen in the following diagrams.
Supplementary load, KR 120 R2700-2

Fig. 4-20: Fastening of supplementary load, arm/in-line wrist, KR 120 R2700-2
Fig. 4-21: Fastening of supplementary load on rotating column/link arm, KR 120 R2700-2
Supplementary load, KR 120 R3100-2

Fig. 4-22: Fastening of supplementary load, arm/in-line wrist, KR 120 R3100-2
Fig. 4-23: Fastening of supplementary load on rotating column/link arm, KR 120 R3100-2
Supplementary load, KR 150 R2700-2

Fig. 4-24: Fastening of supplementary load, arm/in-line wrist, KR 150 R2700-2
Fig. 4-25: Fastening of supplementary load on rotating column/link arm, KR 150 R2700-2
Supplementary load, KR 150 R3100-2

Fig. 4-26: Fastening of supplementary load, arm/in-line wrist, KR 150 R3100-2
Fig. 4-27: Fastening of supplementary load on rotating column/link arm, KR 150 R3100-2
Supplementary load, KR 210 R2700-2

Fig. 4-28: Fastening of supplementary load, arm/in-line wrist, KR 210 R2700-2
Fig. 4-29: Fastening of supplementary load on rotating column/link arm, KR 210 R2700-2
Supplementary load, KR 250 R2700-2

Fig. 4-30: Fastening of supplementary load, arm/in-line wrist, KR 250 R2700-2
Fig. 4-31: Fastening of supplementary load on rotating column/link arm, KR 250 R2700-2
Supplementary load, KR 300 R2700-2

Fig. 4-32: Fastening of supplementary load, arm/in-line wrist, KR 300 R2700-2
4.4 Foundation loads overview

The specified forces and moments already include the payload and the inertia force (weight) of the robot.
Vertical force $F(v)$

<table>
<thead>
<tr>
<th>Foundation loads for floor mounting position</th>
<th>$F(v \text{ normal})$</th>
<th>$F(v \text{ max})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Designation: KR 120 R2700-2</td>
<td>18164 N</td>
<td>24607 N</td>
</tr>
<tr>
<td>Designation: KR 120 R3100-2</td>
<td>18164 N</td>
<td>24607 N</td>
</tr>
<tr>
<td>Designation: KR 150 R2700-2</td>
<td>18164 N</td>
<td>24607 N</td>
</tr>
<tr>
<td>Designation: KR 150 R3100-2</td>
<td>18164 N</td>
<td>24607 N</td>
</tr>
<tr>
<td>Designation: KR 210 R2700-2</td>
<td>18164 N</td>
<td>24607 N</td>
</tr>
<tr>
<td>Designation: KR 250 R2700-2</td>
<td>18164 N</td>
<td>24607 N</td>
</tr>
<tr>
<td>Designation: KR 300 R2700-2</td>
<td>18164 N</td>
<td>24607 N</td>
</tr>
</tbody>
</table>

Horizontal force $F(h)$

<table>
<thead>
<tr>
<th>Foundation loads for floor mounting position</th>
<th>$F(h \text{ normal})$</th>
<th>$F(h \text{ max})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Designation: KR 120 R2700-2</td>
<td>7626 N</td>
<td>21262 N</td>
</tr>
<tr>
<td>Designation: KR 120 R3100-2</td>
<td>7626 N</td>
<td>21262 N</td>
</tr>
<tr>
<td>Designation: KR 150 R2700-2</td>
<td>7626 N</td>
<td>21262 N</td>
</tr>
<tr>
<td>Designation: KR 150 R3100-2</td>
<td>7626 N</td>
<td>21262 N</td>
</tr>
</tbody>
</table>
Foundation loads for floor mounting position

<table>
<thead>
<tr>
<th>Designation</th>
<th>$F(h \text{ normal})$</th>
<th>$F(h \text{ max})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>KR 210 R2700-2</td>
<td>7626 N</td>
<td>21262 N</td>
</tr>
<tr>
<td>KR 250 R2700-2</td>
<td>7626 N</td>
<td>21262 N</td>
</tr>
<tr>
<td>KR 300 R2700-2</td>
<td>7626 N</td>
<td>21262 N</td>
</tr>
</tbody>
</table>

Tilting torque $M(k)$

<table>
<thead>
<tr>
<th>Designation</th>
<th>$M(k \text{ normal})$</th>
<th>$M(k \text{ max})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>KR 120 R2700-2</td>
<td>22790 Nm</td>
<td>40542 Nm</td>
</tr>
<tr>
<td>KR 120 R3100-2</td>
<td>22790 Nm</td>
<td>40542 Nm</td>
</tr>
<tr>
<td>KR 150 R2700-2</td>
<td>22790 Nm</td>
<td>40542 Nm</td>
</tr>
<tr>
<td>KR 150 R3100-2</td>
<td>22790 Nm</td>
<td>40542 Nm</td>
</tr>
<tr>
<td>KR 210 R2700-2</td>
<td>22790 Nm</td>
<td>40542 Nm</td>
</tr>
<tr>
<td>KR 250 R2700-2</td>
<td>22790 Nm</td>
<td>40542 Nm</td>
</tr>
<tr>
<td>KR 300 R2700-2</td>
<td>22790 Nm</td>
<td>40542 Nm</td>
</tr>
</tbody>
</table>

Torque $M(r)$

<table>
<thead>
<tr>
<th>Designation</th>
<th>$M(r \text{ normal})$</th>
<th>$M(r \text{ max})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>KR 120 R2700-2</td>
<td>7817 Nm</td>
<td>19284 Nm</td>
</tr>
<tr>
<td>KR 120 R3100-2</td>
<td>7817 Nm</td>
<td>19284 Nm</td>
</tr>
<tr>
<td>KR 150 R2700-2</td>
<td>7817 Nm</td>
<td>19284 Nm</td>
</tr>
<tr>
<td>KR 150 R3100-2</td>
<td>7817 Nm</td>
<td>19284 Nm</td>
</tr>
<tr>
<td>KR 210 R2700-2</td>
<td>7817 Nm</td>
<td>19284 Nm</td>
</tr>
<tr>
<td>KR 250 R2700-2</td>
<td>7817 Nm</td>
<td>19284 Nm</td>
</tr>
<tr>
<td>KR 300 R2700-2</td>
<td>7817 Nm</td>
<td>19284 Nm</td>
</tr>
</tbody>
</table>
Foundation loads for floor mounting position

<table>
<thead>
<tr>
<th>M(r normal)</th>
<th>M(r max)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Designation: KR 300 R2700-2</td>
<td></td>
</tr>
<tr>
<td>7817 Nm</td>
<td>19284 Nm</td>
</tr>
</tbody>
</table>

WARNING

Normal loads and maximum loads for the foundations are specified in the table. The maximum loads must be referred to when dimensioning the foundations and must be adhered to for safety reasons. Failure to observe this can result in personal injury and damage to property. The normal loads are average expected foundation loads. The actual loads are dependent on the program and on the robot loads and may therefore be greater or less than the normal loads. The supplementary loads (A1 and A2) are not taken into consideration in the calculation of the mounting base load. These supplementary loads must be taken into consideration for F_v.

4.5 Plates and labels

Plates and labels

The following plates and labels (Fig. 4-35) are attached to the robot. They must not be removed or rendered illegible. Illegible plates and labels must be replaced.

![Fig. 4-35: Location of plates and labels](image-url)
<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
</table>
| 1 | **Hot surface**
During operation of the robot, surface temperatures may be reached that could result in burn injuries. Protective gloves must be worn! |
| 2 | **Secure the axes**
Before exchanging any motor, secure the corresponding axis through safeguarding by suitable means/devices to protect against possible movement. The axis can move. Risk of crushing! |
| 3 | **Danger zone**
Entering the danger zone of the robot is prohibited if the robot is in operation or ready for operation. Risk of injury! |
Transport position
Before loosening the bolts of the mounting base, the robot must be in the transport position as indicated in the table. Risk of toppling!

Identification plate
Content according to Machinery Directive.

Counterbalancing system
The system is pressurized with oil and nitrogen. Read and follow the assembly and operating instructions before commencing work on the counterbalancing system. Risk of injury!
Work on the robot
Before start-up, transportation or maintenance, read and follow the assembly and operating instructions.

Mounting flange on in-line wrist type ZH210
The values specified on this plate apply for the installation of tools on the mounting flange of the wrist and must be observed.

Mounting flange on in-line wrist type ZH300
The values specified on this plate apply for the installation of tools on the mounting flange of the wrist and must be observed.

4.6 REACH duty to communicate information acc. to Art. 33 of Regulation (EC) 1907/2006

On the basis of the information provided by our suppliers, this product and its components contain no substances included on the "Candidate List" of Substances of Very High Concern (SVHCs) in a concentration exceeding 0.1 percent by mass.
4.7 Stopping distances and times

4.7.1 General information

Information concerning the data:

- The stopping distance is the angle traveled by the robot from the moment the stop signal is triggered until the robot comes to a complete standstill.
- The stopping time is the time that elapses from the moment the stop signal is triggered until the robot comes to a complete standstill.
- The data are given for the main axes A1, A2 and A3. The main axes are the axes with the greatest deflection.
- Superposed axis motions can result in longer stopping distances.
- Stopping distances and stopping times in accordance with DIN EN ISO 10218-1, Annex B.
- Stop categories:
 - Stop category 0 » STOP 0
 - Stop category 1 » STOP 1 according to IEC 60204-1
- The values specified for Stop 0 are guide values determined by means of tests and simulation. They are average values which conform to the requirements of DIN EN ISO 10218-1. The actual stopping distances and stopping times may differ due to internal and external influences on the braking torque. It is therefore advisable to determine the exact stopping distances and stopping times where necessary under the real conditions of the actual robot application.
- Measuring technique
 The stopping distances were measured using the robot-internal measuring technique.
- The wear on the brakes varies depending on the operating mode, robot application and the number of STOP 0 stops triggered. It is therefore advisable to check the stopping distance at least once a year.

4.7.2 Terms used

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>m</td>
<td>Mass of the rated load and the supplementary load on the arm.</td>
</tr>
<tr>
<td>Phi</td>
<td>Angle of rotation (°) about the corresponding axis. This value can be entered in the controller via the KCP/smartPAD and can be displayed on the KCP/smartPAD.</td>
</tr>
<tr>
<td>POV</td>
<td>Program override (%) = velocity of the robot motion. This value can be entered in the controller via the KCP/smartPAD and can be displayed on the KCP/smartPAD.</td>
</tr>
<tr>
<td>Extension</td>
<td>Distance (l in %) (>>> Fig. 4-36) between axis 1 and the intersection of axes 4 and 5. With parallelogram robots, the distance between axis 1 and the intersection of axis 6 and the mounting flange.</td>
</tr>
<tr>
<td>Term</td>
<td>Description</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
</tr>
</tbody>
</table>
| KCP | KUKA Control Panel
The KCP has all the operator control and display functions required for operating and programming the industrial robot. |
| smartPAD | Teach pendant for the KR C4
The smartPAD has all the operator control and display functions required for operating and programming the industrial robot. |

Fig. 4-36: Extension

4.7.3 Stopping distances and times, KR 120 R2700-2

4.7.3.1 Stopping distances and stopping times for STOP 0, axis 1 to axis 3

The table shows the stopping distances and stopping times after a STOP 0 (category 0 stop) is triggered. The values refer to the following configuration:

- Extension $l = 100\%$
- Program override POV = 100%
- Mass \(m \) = maximum load (rated load + supplementary load on arm)

<table>
<thead>
<tr>
<th></th>
<th>Stopping distance (°)</th>
<th>Stopping time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Axis 1</td>
<td>41.21</td>
<td>0.65</td>
</tr>
<tr>
<td>Axis 2</td>
<td>20.02</td>
<td>0.38</td>
</tr>
<tr>
<td>Axis 3</td>
<td>22.99</td>
<td>0.33</td>
</tr>
</tbody>
</table>
4.7.3.2 Stopping distances and stopping times for STOP 1, axis 1

Fig. 4-37: Stopping distances for STOP 1, axis 1
Fig. 4-38: Stopping times for STOP 1, axis 1
4.7.3.3 Stopping distances and stopping times for STOP 1, axis 2

Fig. 4-39: Stopping distances for STOP 1, axis 2
Fig. 4-40: Stopping times for STOP 1, axis 2
4.7.3.4 Stopping distances and stopping times for STOP 1, axis 3

The table shows the stopping distances and stopping times after a STOP 0 (category 0 stop) is triggered. The values refer to the following configuration:

- Extension \(l = 100\% \)
- Program override \(POV = 100\% \)
- Mass \(m = \) maximum load (rated load + supplementary load on arm)

<table>
<thead>
<tr>
<th>Axis</th>
<th>Stopping distance (°)</th>
<th>Stopping time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Axis 1</td>
<td>45.57</td>
<td>0.77</td>
</tr>
<tr>
<td>Axis 2</td>
<td>19.95</td>
<td>0.46</td>
</tr>
</tbody>
</table>

4.7.4 Stopping distances and times, KR 120 R3100-2

4.7.4.1 Stopping distances and stopping times for STOP 0, axis 1 to axis 3

Fig. 4-41: Stopping distances for STOP 1, axis 3

Fig. 4-42: Stopping times for STOP 1, axis 3
4.7.4.2 Stopping distances and stopping times for STOP 1, axis 1

<table>
<thead>
<tr>
<th></th>
<th>Stopping distance (°)</th>
<th>Stopping time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Axis 3</td>
<td>20.31</td>
<td>0.35</td>
</tr>
</tbody>
</table>

Fig. 4-43: Stopping distances for STOP 1, axis 1
Fig. 4-44: Stopping times for STOP 1, axis 1
4.7.4.3 Stopping distances and stopping times for STOP 1, axis 2

Fig. 4-45: Stopping distances for STOP 1, axis 2
Fig. 4-46: Stopping times for STOP 1, axis 2
4.7.4.4 Stopping distances and stopping times for STOP 1, axis 3

Fig. 4-47: Stopping distances for STOP 1, axis 3

Fig. 4-48: Stopping times for STOP 1, axis 3

4.7.5 Stopping distances and times, KR 150 R2700-2

4.7.5.1 Stopping distances and stopping times for STOP 0, axis 1 to axis 3

The table shows the stopping distances and stopping times after a STOP 0 (category 0 stop) is triggered. The values refer to the following configuration:

- Extension l = 100%
- Program override POV = 100%
- Mass m = maximum load (rated load + supplementary load on arm)

<table>
<thead>
<tr>
<th>Axis</th>
<th>Stopping distance (°)</th>
<th>Stopping time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Axis 1</td>
<td>43.79</td>
<td>0.70</td>
</tr>
<tr>
<td>Axis 2</td>
<td>25.40</td>
<td>0.48</td>
</tr>
</tbody>
</table>
4.7.5.2 Stopping distances and stopping times for STOP 1, axis 1

<table>
<thead>
<tr>
<th>Axis 3</th>
<th>Stopping distance (°)</th>
<th>Stopping time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>22.06</td>
<td>0.35</td>
</tr>
</tbody>
</table>

Fig. 4-49: Stopping distances for STOP 1, axis 1
Fig. 4-50: Stopping times for STOP 1, axis 1
4.7.5.3 Stopping distances and stopping times for STOP 1, axis 2

Fig. 4-51: Stopping distances for STOP 1, axis 2
Fig. 4-52: Stopping times for STOP 1, axis 2
4.7.5.4 Stopping distances and stopping times for STOP 1, axis 3

Fig. 4-53: Stopping distances for STOP 1, axis 3

Fig. 4-54: Stopping times for STOP 1, axis 3

4.7.6 Stopping distances and times, KR 150 R3100-2

4.7.6.1 Stopping distances and stopping times for STOP 0, axis 1 to axis 3

The table shows the stopping distances and stopping times after a STOP 0 (category 0 stop) is triggered. The values refer to the following configuration:

- Extension l = 100%
- Program override POV = 100%
- Mass m = maximum load (rated load + supplementary load on arm)

<table>
<thead>
<tr>
<th></th>
<th>Stopping distance (°)</th>
<th>Stopping time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Axis 1</td>
<td>41.52</td>
<td>0.72</td>
</tr>
<tr>
<td>Axis 2</td>
<td>18.28</td>
<td>0.46</td>
</tr>
</tbody>
</table>
4.7.6.2 Stopping distances and stopping times for STOP 1, axis 1

<table>
<thead>
<tr>
<th></th>
<th>Stopping distance (°)</th>
<th>Stopping time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Axis 3</td>
<td>14.86</td>
<td>0.30</td>
</tr>
</tbody>
</table>

Fig. 4-55: Stopping distances for STOP 1, axis 1
Fig. 4-56: Stopping times for STOP 1, axis 1
4.7.6.3 Stopping distances and stopping times for STOP 1, axis 2

Fig. 4-57: Stopping distances for STOP 1, axis 2
Fig. 4-58: Stopping times for STOP 1, axis 2
4.7.6.4 Stopping distances and stopping times for STOP 1, axis 3

![Graph showing stopping distances for STOP 1, axis 3](image)

Fig. 4-59: Stopping distances for STOP 1, axis 3

![Graph showing stopping times for STOP 1, axis 3](image)

Fig. 4-60: Stopping times for STOP 1, axis 3

4.7.7 Stopping distances and times, KR 210 R2700-2

4.7.7.1 Stopping distances and stopping times for STOP 0, axis 1 to axis 3

The table shows the stopping distances and stopping times after a STOP 0 (category 0 stop) is triggered. The values refer to the following configuration:
- Extension l = 100%
- Program override POV = 100%
- Mass m = maximum load (rated load + supplementary load on arm)

<table>
<thead>
<tr>
<th></th>
<th>Stopping distance (°)</th>
<th>Stopping time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Axis 1</td>
<td>43.00</td>
<td>0.77</td>
</tr>
<tr>
<td>Axis 2</td>
<td>20.45</td>
<td>0.49</td>
</tr>
</tbody>
</table>
4.7.7.2 Stopping distances and stopping times for STOP 1, axis 1

<table>
<thead>
<tr>
<th>Axis 3</th>
<th>Stopping distance (°)</th>
<th>Stopping time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>16.54</td>
<td>0.38</td>
</tr>
</tbody>
</table>

Fig. 4-61: Stopping distances for STOP 1, axis 1
Fig. 4-62: Stopping times for STOP 1, axis 1
4.7.7.3 Stopping distances and stopping times for STOP 1, axis 2

Fig. 4-63: Stopping distances for STOP 1, axis 2
Fig. 4-64: Stopping times for STOP 1, axis 2
4.7.7.4 Stopping distances and stopping times for STOP 1, axis 3

![Graph showing stopping distances and times for STOP 1, axis 3](image1)

Fig. 4-65: Stopping distances for STOP 1, axis 3

![Graph showing stopping times for STOP 1, axis 3](image2)

Fig. 4-66: Stopping times for STOP 1, axis 3

4.7.8 Stopping distances and times, KR 250 R2700-2

4.7.8.1 Stopping distances and stopping times for STOP 0, axis 1 to axis 3

The table shows the stopping distances and stopping times after a STOP 0 (category 0 stop) is triggered. The values refer to the following configuration:

- Extension l = 100%
- Program override POV = 100%
- Mass m = maximum load (rated load + supplementary load on arm)

<table>
<thead>
<tr>
<th>Axis</th>
<th>Stopping distance (°)</th>
<th>Stopping time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Axis 1</td>
<td>23.83</td>
<td>0.55</td>
</tr>
<tr>
<td>Axis 2</td>
<td>13.07</td>
<td>0.35</td>
</tr>
</tbody>
</table>
4.7.8.2 Stopping distances and stopping times for STOP 1, axis 1

<table>
<thead>
<tr>
<th>Axis 3</th>
<th>Stopping distance (°)</th>
<th>Stopping time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>21.96</td>
<td>0.70</td>
</tr>
</tbody>
</table>

Fig. 4-67: Stopping distances for STOP 1, axis 1
Fig. 4-68: Stopping times for STOP 1, axis 1
4.7.8.3 Stopping distances and stopping times for STOP 1, axis 2

Fig. 4-69: Stopping distances for STOP 1, axis 2
Fig. 4-70: Stopping times for STOP 1, axis 2
4.7.8.4 Stopping distances and stopping times for STOP 1, axis 3

Fig. 4-71: Stopping distances for STOP 1, axis 3

Fig. 4-72: Stopping times for STOP 1, axis 3

4.7.9 Stopping distances and times, KR 300 R2700-2

4.7.9.1 Stopping distances and stopping times for STOP 0, axis 1 to axis 3

The table shows the stopping distances and stopping times after a STOP 0 (category 0 stop) is triggered. The values refer to the following configuration:

- Extension I = 100%
- Program override POV = 100%
- Mass m = maximum load (rated load + supplementary load on arm)

<table>
<thead>
<tr>
<th></th>
<th>Stopping distance (°)</th>
<th>Stopping time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Axis 1</td>
<td>32.24</td>
<td>0.67</td>
</tr>
<tr>
<td>Axis 2</td>
<td>14.85</td>
<td>0.38</td>
</tr>
</tbody>
</table>
4.7.9.2 Stopping distances and stopping times for STOP 1, axis 1

<table>
<thead>
<tr>
<th>Axis</th>
<th>Stopping distance (°)</th>
<th>Stopping time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>17.46</td>
<td>0.38</td>
</tr>
</tbody>
</table>

Fig. 4-73: Stopping distances for STOP 1, axis 1
Fig. 4-74: Stopping times for STOP 1, axis 1
4.7.9.3 Stopping distances and stopping times for STOP 1, axis 2

Fig. 4-75: Stopping distances for STOP 1, axis 2
Fig. 4-76: Stopping times for STOP 1, axis 2
4.7.9.4 Stopping distances and stopping times for STOP 1, axis 3

Fig. 4-77: Stopping distances for STOP 1, axis 3

Fig. 4-78: Stopping times for STOP 1, axis 3
5 Safety

5.1 General

• This “Safety” chapter refers to a mechanical component of an industrial robot.
• If the mechanical component is used together with a KUKA robot controller, the “Safety” chapter of the operating instructions or assembly instructions of the robot controller must be used! This contains all the information provided in this “Safety” chapter. It also contains additional safety information relating to the robot controller which must be observed.
• Where this “Safety” chapter uses the term “industrial robot”, this also refers to the individual mechanical component if applicable.

5.1.1 Liability

The device described in this document is either an industrial robot or a component thereof.

Components of the industrial robot:

• Manipulator
• Robot controller
• Teach pendant
• Connecting cables
• External axes (optional)
 e.g. linear unit, turn-tilt table, positioner
• Software
• Options, accessories

The industrial robot is built using state-of-the-art technology and in accordance with the recognized safety rules. Nevertheless, misuse of the industrial robot may constitute a risk to life and limb or cause damage to the industrial robot and to other material property.

The industrial robot may only be used in perfect technical condition in accordance with its designated use and only by safety-conscious persons who are fully aware of the risks involved in its operation. Use of the industrial robot is subject to compliance with this document and with the declaration of incorporation supplied together with the industrial robot. Any functional disorders affecting safety must be rectified immediately.

Safety information

Information about safety may not be construed against KUKA Deutschland GmbH. Even if all safety instructions are followed, this is not a guarantee that the industrial robot will not cause personal injuries or material damage.

No modifications may be carried out to the industrial robot without the authorization of KUKA Deutschland GmbH. Unauthorized modifications will result in the loss of warranty and liability claims.

Additional components (tools, software, etc.), not supplied by KUKA Deutschland GmbH, may be integrated into the industrial robot. The user is liable for any damage these components may cause to the industrial robot or to other material property.
5.1.2 Intended use of the industrial robot

The industrial robot is intended exclusively for the use designated in the “Purpose” chapter of the operating instructions or assembly instructions. Any use or application deviating from the intended use is deemed to be misuse and is not allowed. It will result in the loss of warranty and liability claims. Operation of the industrial robot in accordance with its intended use also requires compliance with the operating and assembly instructions for the individual components, with particular reference to the maintenance specifications.

Misuse

Any use or application deviating from the intended use is deemed to be misuse and is not allowed. This includes e.g.:

- Use as a climbing aid
- Operation outside the specified operating parameters
- Operation without the required safety equipment

5.1.3 EC declaration of conformity and declaration of incorporation

The industrial robot constitutes partly completed machinery as defined by the EC Machinery Directive. The industrial robot may only be put into operation if the following preconditions are met:

- The industrial robot is integrated into a complete system.
- or: The industrial robot, together with other machinery, constitutes a complete system.
- or: All safety functions and safeguards required for operation in the complete machine as defined by the EC Machinery Directive have been added to the industrial robot.
- The complete system complies with the EC Machinery Directive. This has been confirmed by means of a conformity assessment procedure.

EC declaration of conformity

The system integrator must issue an EC declaration of conformity for the complete system in accordance with the Machinery Directive. The EC declaration of conformity forms the basis for the CE mark for the system. The industrial robot must always be operated in accordance with the applicable national laws, regulations and standards.

The robot controller has a CE mark in accordance with the EMC Directive and the Low Voltage Directive.

Declaration of incorporation

The partly completed machinery is supplied with a declaration of incorporation in accordance with Annex II B of the Machinery Directive 2006/42/EC. The assembly instructions and a list of essential requirements complied with in accordance with Annex I are integral parts of this declaration of incorporation.

The declaration of incorporation declares that the start-up of the partly completed machinery is not allowed until the partly completed machinery
has been incorporated into machinery, or has been assembled with other parts to form machinery, and this machinery complies with the terms of the EC Machinery Directive, and the EC declaration of conformity is present in accordance with Annex II A.

5.1.4 Terms used

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Axis range</td>
<td>Range of each axis, in degrees or millimeters, within which it may move. The axis range must be defined for each axis.</td>
</tr>
<tr>
<td>Stopping distance</td>
<td>Stopping distance = reaction distance + braking distance. The stopping distance is part of the danger zone.</td>
</tr>
<tr>
<td>Workspace</td>
<td>The manipulator is allowed to move within its workspace. The workspace is derived from the individual axis ranges.</td>
</tr>
<tr>
<td>Operator (User)</td>
<td>The user of the industrial robot can be the management, employer or delegated person responsible for use of the industrial robot.</td>
</tr>
<tr>
<td>Danger zone</td>
<td>The danger zone consists of the workspace and the stopping distances.</td>
</tr>
<tr>
<td>Service life</td>
<td>The service life of a safety-relevant component begins at the time of delivery of the component to the customer. The service life is not affected by whether the component is used in a controller or elsewhere or not, as safety-relevant components are also subject to aging during storage</td>
</tr>
<tr>
<td>KCP</td>
<td>KUKA Control Panel</td>
</tr>
<tr>
<td></td>
<td>The KCP has all the operator control and display functions required for operating and programming the industrial robot.</td>
</tr>
<tr>
<td>KUKA smartPAD</td>
<td>see “smartPAD”</td>
</tr>
<tr>
<td>KUKA smartPAD-2</td>
<td></td>
</tr>
<tr>
<td>Manipulator</td>
<td>The robot arm and the associated electrical installations</td>
</tr>
<tr>
<td>Safety zone</td>
<td>The safety zone is situated outside the danger zone.</td>
</tr>
<tr>
<td>Safety options</td>
<td>Generic term for options which make it possible to configure additional safe monitoring functions in addition to the standard safety functions.</td>
</tr>
<tr>
<td></td>
<td>Example: SafeOperation</td>
</tr>
<tr>
<td>smartPAD</td>
<td>Teach pendant for the KR C4</td>
</tr>
<tr>
<td></td>
<td>The smartPAD has all the operator control and display functions required for operating and programming the industrial robot. 2 models exist:</td>
</tr>
<tr>
<td></td>
<td>• smartPAD</td>
</tr>
<tr>
<td></td>
<td>• smartPAD-2</td>
</tr>
<tr>
<td></td>
<td>In turn, for each model there are variants, e.g. with different lengths of connecting cables.</td>
</tr>
<tr>
<td></td>
<td>The designation “KUKA smartPAD” or “smartPAD” refers to both models unless an explicit distinction is made.</td>
</tr>
<tr>
<td>Term</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Stop category 0</td>
<td>The drives are deactivated immediately and the brakes are applied. The manipulator and any external axes (optional) perform path-oriented braking.</td>
</tr>
<tr>
<td></td>
<td>Note: This stop category is called STOP 0 in this document.</td>
</tr>
<tr>
<td>Stop category 1</td>
<td>The manipulator and any external axes (optional) perform path-maintaining braking. The drives are deactivated after 1 s and the brakes are applied.</td>
</tr>
<tr>
<td></td>
<td>Note: This stop category is called STOP 1 in this document.</td>
</tr>
<tr>
<td>Stop category 2</td>
<td>The drives are not deactivated and the brakes are not applied. The manipulator and any external axes (optional) are braked with a normal braking ramp.</td>
</tr>
<tr>
<td></td>
<td>Note: This stop category is called STOP 2 in this document.</td>
</tr>
<tr>
<td>System integrator (plant integrator)</td>
<td>System integrators are people who safely integrate the industrial robot into a complete system and commission it.</td>
</tr>
<tr>
<td>T1</td>
<td>Test mode, Manual Reduced Velocity (<= 250 mm/s)</td>
</tr>
<tr>
<td>T2</td>
<td>Test mode, Manual High Velocity (> 250 mm/s permissible)</td>
</tr>
<tr>
<td>External axis</td>
<td>Axis of motion that does not belong to the manipulator, yet is controlled with the same controller. e.g. KUKA linear unit, turn-tilt table, Posiflex</td>
</tr>
</tbody>
</table>

5.2 **Personnel**

The following persons or groups of persons are defined for the industrial robot:

- User
- Personnel

⚠️ All persons working with the industrial robot must have read and understood the industrial robot documentation, including the safety chapter.

User

The user must observe the labor laws and regulations. This includes e.g.:

- The user must comply with his monitoring obligations.
- The user must carry out briefing at defined intervals.

Personnel

Personnel must be instructed, before any work is commenced, in the type of work involved and what exactly it entails as well as any hazards which may exist. Instruction must be carried out regularly. Instruction is also required after particular incidents or technical modifications.

Personnel includes:

- System integrator
- Operators, subdivided into:
 - Start-up, maintenance and service personnel
 - Operating personnel
 - Cleaning personnel
Installation, exchange, adjustment, operation, maintenance and repair must be performed only as specified in the operating or assembly instructions for the relevant component of the industrial robot and only by personnel specially trained for this purpose.

System integrator

The industrial robot is safely integrated into a complete system by the system integrator.

The system integrator is responsible for the following tasks:

- Installing the industrial robot
- Connecting the industrial robot
- Performing risk assessment
- Implementing the required safety functions and safeguards
- Issuing the EC declaration of conformity
- Attaching the CE mark
- Creating the operating instructions for the system

Operators

The operator must meet the following preconditions:

- The operator must be trained for the work to be carried out.
- Work on the system must only be carried out by qualified personnel. These are people who, due to their specialist training, knowledge and experience, and their familiarization with the relevant standards, are able to assess the work to be carried out and detect any potential hazards.

Work on the electrical and mechanical equipment of the industrial robot may only be carried out by specially trained personnel.

5.3 Workspace, safety zone and danger zone

Workspaces are to be restricted to the necessary minimum size. A workspace must be safeguarded using appropriate safeguards.

The safeguards (e.g. safety gate) must be situated inside the safety zone.

In the case of a stop, the manipulator and external axes (optional) are braked and come to a stop within the danger zone.

The danger zone consists of the workspace and the stopping distances of the manipulator and external axes (optional). It must be safeguarded by means of physical safeguards to prevent danger to persons or the risk of material damage.

5.4 Overview of protective equipment

The protective equipment of the mechanical component may include:

- Mechanical end stops
- Mechanical axis limitation (optional)
- Release device (optional)
- Brake release device (optional)
- Labeling of danger areas

Not all equipment is relevant for every mechanical component.
5.4.1 Mechanical end stops

Depending on the robot variant, the axis ranges of the main and wrist axes of the manipulator are partially limited by mechanical end stops. Additional mechanical end stops can be installed on the external axes.

WARNING

If the manipulator or an external axis hits an obstruction or a mechanical end stop or mechanical axis limitation, the manipulator can no longer be operated safely. The manipulator must be taken out of operation and KUKA Deutschland GmbH must be consulted before it is put back into operation.

5.4.2 Mechanical axis limitation (optional)

Some manipulators can be fitted with mechanical axis limitation systems in axes A1 to A3. The axis limitation systems restrict the working range to the required minimum. This increases personal safety and protection of the system.

In the case of manipulators that are not designed to be fitted with mechanical axis limitation, the workspace must be laid out in such a way that there is no danger to persons or material property, even in the absence of mechanical axis limitation.

If this is not possible, the workspace must be limited by means of photoelectric barriers, photoelectric curtains or obstacles on the system side. There must be no shearing or crushing hazards at the loading and transfer areas.

This option is not available for all robot models. Information on specific robot models can be obtained from KUKA Deutschland GmbH.

5.4.3 Options for moving the manipulator without drive energy

The system user is responsible for ensuring that the training of personnel with regard to the response to emergencies or exceptional situations also includes how the manipulator can be moved without drive energy.

Description

The following options are available for moving the manipulator without drive energy after an accident or malfunction:

- **Release device (optional)**
 The release device can be used for the main axis drive motors and, depending on the robot variant, also for the wrist axis drive motors.

- **Brake release device (option)**
 The brake release device is designed for robot variants whose motors are not freely accessible.

- **Moving the wrist axes directly by hand**
 There is no release device available for the wrist axes of variants in the low payload category. This is not necessary because the wrist axes can be moved directly by hand.
Information about the options available for the various robot models and about how to use them can be found in the assembly and operating instructions for the robot or requested from KUKA Deutschland GmbH.

NOTICE

Moving the manipulator without drive energy can damage the motor brakes of the axes concerned. The motor must be replaced if the brake has been damaged. The manipulator may therefore be moved without drive energy only in emergencies, e.g. for rescuing persons.

5.4.4 Labeling on the industrial robot

All plates, labels, symbols and marks constitute safety-relevant parts of the industrial robot. They must not be modified or removed.

Labeling on the industrial robot consists of:

- Identification plates
- Warning signs
- Safety symbols
- Designation labels
- Cable markings
- Rating plates

Further information is contained in the technical data of the operating instructions or assembly instructions of the components of the industrial robot.

5.5 Safety measures

5.5.1 General safety measures

The industrial robot may only be used in perfect technical condition in accordance with its intended use and only by safety-conscious persons. Operator errors can result in personal injury and damage to property.

It is important to be prepared for possible movements of the industrial robot even after the robot controller has been switched off and locked out. Incorrect installation (e.g. overload) or mechanical defects (e.g. brake defect) can cause the manipulator or external axes to sag. If work is to be carried out on a switched-off industrial robot, the manipulator and external axes must first be moved into a position in which they are unable to move on their own, whether the payload is mounted or not. If this is not possible, the manipulator and external axes must be secured by appropriate means.

DANGER

In the absence of operational safety functions and safeguards, the industrial robot can cause personal injury or material damage. If safety functions or safeguards are dismantled or deactivated, the industrial robot may not be operated.

DANGER

Standing underneath the robot arm can cause death or injuries. For this reason, standing underneath the robot arm is prohibited!
CAUTION

The motors reach temperatures during operation which can cause burns to the skin. Contact must be avoided. Appropriate safety precautions must be taken, e.g. protective gloves must be worn.

KCP/smartPAD

The user must ensure that the industrial robot is only operated with the KCP/smartPAD by authorized persons.

If more than one KCP/smartPAD is used in the overall system, it must be ensured that each device is unambiguously assigned to the corresponding industrial robot. They must not be interchanged.

WARNING

The operator must ensure that decoupled KCPs/smartPADs are immediately removed from the system and stored out of sight and reach of personnel working on the industrial robot. This serves to prevent operational and non-operational EMERGENCY STOP devices from becoming interchanged.

Failure to observe this precaution may result in death, severe injuries or considerable damage to property.

External keyboard, external mouse

An external keyboard and/or external mouse may only be used if the following conditions are met:

- Start-up or maintenance work is being carried out.
- The drives are switched off.
- There are no persons in the danger zone.

The KCP/smartPAD must not be used as long as an external keyboard and/or external mouse are connected to the control cabinet.

The external keyboard and/or external mouse must be removed from the control cabinet as soon as the start-up or maintenance work is completed or the KCP/smartPAD is connected.

Modifications

After modifications to the industrial robot, checks must be carried out to ensure the required safety level. The valid national or regional work safety regulations must be observed for this check. The correct functioning of all safety functions must also be tested.

New or modified programs must always be tested first in Manual Reduced Velocity mode (T1).

After modifications to the industrial robot, existing programs must always be tested first in Manual Reduced Velocity mode (T1). This applies to all components of the industrial robot and includes e.g. modifications of the external axes or to the software and configuration settings.

Faults

The following tasks must be carried out in the case of faults in the industrial robot:

- Switch off the robot controller and secure it (e.g. with a padlock) to prevent unauthorized persons from switching it on again.
- Indicate the fault by means of a label with a corresponding warning (tagout).
- Keep a record of the faults.
• Eliminate the fault and carry out a function test.

5.5.2 Transportation

Manipulator

The prescribed transport position of the manipulator must be observed. Transportation must be carried out in accordance with the operating instructions or assembly instructions of the robot. Avoid vibrations and impacts during transportation in order to prevent damage to the manipulator.

Robot controller

The prescribed transport position of the robot controller must be observed. Transportation must be carried out in accordance with the operating instructions or assembly instructions of the robot controller. Avoid vibrations and impacts during transportation in order to prevent damage to the robot controller.

External axis (optional)

The prescribed transport position of the external axis (e.g. KUKA linear unit, turn-tilt table, positioner) must be observed. Transportation must be carried out in accordance with the operating instructions or assembly instructions of the external axis.

5.5.3 Start-up and recommissioning

Before starting up systems and devices for the first time, a check must be carried out to ensure that the systems and devices are complete and operational, that they can be operated safely and that any damage is detected.

The valid national or regional work safety regulations must be observed for this check. The correct functioning of all safety circuits must also be tested.

The passwords for logging onto the KUKA System Software as “Expert” and “Administrator” must be changed before start-up and must only be communicated to authorized personnel.

WARNING

The robot controller is preconfigured for the specific industrial robot. If cables are interchanged, the manipulator and the external axes (optional) may receive incorrect data and can thus cause personal injury or material damage. If a system consists of more than one manipulator, always connect the connecting cables to the manipulators and their corresponding robot controllers.
If additional components (e.g. cables), which are not part of the scope of supply of KUKA Deutschland GmbH, are integrated into the industrial robot, the user is responsible for ensuring that these components do not adversely affect or disable safety functions.

NOTICE
If the internal cabinet temperature of the robot controller differs greatly from the ambient temperature, condensation can form, which may cause damage to the electrical components. Do not put the robot controller into operation until the internal temperature of the cabinet has adjusted to the ambient temperature.

Function test
The following tests must be carried out before start-up and recommissioning:

It must be ensured that:

- The industrial robot is correctly installed and fastened in accordance with the specifications in the documentation.
- There is no damage to the robot that could be attributed to external forces. Example: Dents or abrasion that could be caused by an impact or collision.

WARNING
In the case of such damage, the affected components must be exchanged. In particular, the motor and counterbalancing system must be checked carefully. External forces can cause non-visible damage. For example, it can lead to a gradual loss of drive power from the motor, resulting in unintended movements of the manipulator. Death, injuries or considerable damage to property may otherwise result.

- There are no foreign bodies or loose parts on the industrial robot.
- All required safety equipment is correctly installed and operational.
- The power supply ratings of the industrial robot correspond to the local supply voltage and mains type.
- The ground conductor and the equipotential bonding cable are sufficiently rated and correctly connected.
- The connecting cables are correctly connected and the connectors are locked.

5.5.4 Manual mode

Manual mode is the mode for setup work. Setup work is all the tasks that have to be carried out on the industrial robot to enable automatic operation. Setup work includes:

- Jog mode
- Teaching
- Programming
- Program verification
The following must be taken into consideration in manual mode:

- If the drives are not required, they must be switched off to prevent the manipulator or the external axes (optional) from being moved unintentionally.
- New or modified programs must always be tested first in Manual Reduced Velocity mode (T1).
- The manipulator, tooling or external axes (optional) must never touch or project beyond the safety fence.
- Workpieces, tooling and other objects must not become jammed as a result of the industrial robot motion, nor must they lead to short-circuits or be liable to fall off.
- All setup work must be carried out, where possible, from outside the safeguarded area.

If the setup work has to be carried out inside the safeguarded area, the following must be taken into consideration:

In Manual Reduced Velocity mode (T1):

- If it can be avoided, there must be no other persons inside the safeguarded area.

If it is necessary for there to be several persons inside the safeguarded area, the following must be observed:
 - Each person must have an enabling device.
 - All persons must have an unimpeded view of the industrial robot.
 - Eye-contact between all persons must be possible at all times.
- The operator must be so positioned that he can see into the danger area and get out of harm’s way.

In Manual High Velocity mode (T2):

- This mode may only be used if the application requires a test at a velocity higher than possible in T1 mode.
- Teaching and programming are not permissible in this operating mode.
- Before commencing the test, the operator must ensure that the enabling devices are operational.
- The operator must be positioned outside the danger zone.
- There must be no other persons inside the safeguarded area. It is the responsibility of the operator to ensure this.

5.5.5 Automatic mode

Automatic mode is only permissible in compliance with the following safety measures:

- All safety equipment and safeguards are present and operational.
- There are no persons in the system.
- The defined working procedures are adhered to.

If the manipulator or an external axis (optional) comes to a standstill for no apparent reason, the danger zone must not be entered until an EMERGENCY STOP has been triggered.

5.5.6 Maintenance and repair

After maintenance and repair work, checks must be carried out to ensure the required safety level. The valid national or regional work safety regula-
tions must be observed for this check. The correct functioning of all safety functions must also be tested.

The purpose of maintenance and repair work is to ensure that the system is kept operational or, in the event of a fault, to return the system to an operational state. Repair work includes troubleshooting in addition to the actual repair itself.

The following safety measures must be carried out when working on the industrial robot:

- Carry out work outside the danger zone. If work inside the danger zone is necessary, the user must define additional safety measures to ensure the safe protection of personnel.
- Switch off the industrial robot and secure it (e.g. with a padlock) to prevent it from being switched on again. If it is necessary to carry out work with the robot controller switched on, the user must define additional safety measures to ensure the safe protection of personnel.
- If it is necessary to carry out work with the robot controller switched on, this may only be done in operating mode T1.
- Label the system with a sign indicating that work is in progress. This sign must remain in place, even during temporary interruptions to the work.
- The EMERGENCY STOP devices must remain active. If safety functions or safeguards are deactivated during maintenance or repair work, they must be reactivated immediately after the work is completed.

DANGER

Before work is commenced on live parts of the robot system, the main switch must be turned off and secured against being switched on again. The system must then be checked to ensure that it is deenergized. It is not sufficient, before commencing work on live parts, to execute an EMERGENCY STOP or a safety stop, or to switch off the drives, as this does not disconnect the robot system from the mains power supply. Parts remain energized. Death or severe injuries may result.

Faulty components must be replaced using new components with the same article numbers or equivalent components approved by KUKA Deutschland GmbH for this purpose.

Cleaning and preventive maintenance work is to be carried out in accordance with the operating instructions.

Robot controller

Even when the robot controller is switched off, parts connected to peripheral devices may still carry voltage. The external power sources must therefore be switched off if work is to be carried out on the robot controller.

The ESD regulations must be adhered to when working on components in the robot controller.

Voltagess in excess of 50 V (up to 600 V) can be present in various components for several minutes after the robot controller has been switched off! To prevent life-threatening injuries, no work may be carried out on the industrial robot in this time.

Water and dust must be prevented from entering the robot controller.

Counterbalancing system

Some robot variants are equipped with a hydropneumatic, spring or gas cylinder counterbalancing system.
The hydropneumatic and gas cylinder counterbalancing systems are pressure equipment and, as such, are subject to obligatory equipment monitoring and the provisions of the Pressure Equipment Directive.

The user must comply with the applicable national laws, regulations and standards pertaining to pressure equipment.

Inspection intervals in Germany in accordance with Industrial Safety Order, Sections 14 and 15. Inspection by the user before commissioning at the installation site.

The following safety measures must be carried out when working on the counterbalancing system:

- The manipulator assemblies supported by the counterbalancing systems must be secured.
- Work on the counterbalancing systems must only be carried out by qualified personnel.

Hazardous substances

The following safety measures must be carried out when handling hazardous substances:

- Avoid prolonged and repeated intensive contact with the skin.
- Avoid breathing in oil spray or vapors.
- Clean skin and apply skin cream.

To ensure safe use of our products, we recommend regularly requesting up-to-date safety data sheets for hazardous substances.

5.5.7 Decommissioning, storage and disposal

The industrial robot must be decommissioned, stored and disposed of in accordance with the applicable national laws, regulations and standards.

5.6 Applied norms and regulations

<table>
<thead>
<tr>
<th>Name/Edition</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>EN ISO 13850:2015</td>
<td>Safety of machinery: Emergency stop - Principles for design</td>
</tr>
<tr>
<td>EN ISO 13849-1:2015</td>
<td>Safety of machinery: Safety-related parts of control systems - Part 1: General principles of design</td>
</tr>
</tbody>
</table>
EN ISO 13849-2:2012 Safety of machinery:
Safety-related parts of control systems - Part 2: Validation

EN ISO 12100:2010 Safety of machinery:
General principles of design, risk assessment and risk reduction

EN ISO 10218-1:2011 Industrial robots – Safety requirements:
Part 1: Robots
Note: Content equivalent to ANSI/RIA R.15.06-2012, Part 1

EN 614-1:2006+A1:2009 Safety of machinery:
Ergonomic design principles - Part 1: Terms and general principles

EN 61000-6-2:2005 Electromagnetic compatibility (EMC):
Part 6-2: Generic standards; Immunity for industrial environments

Part 6-4: Generic standards; Emission standard for industrial environments

EN 60204-1:2006/A1:2009 Safety of machinery:
Electrical equipment of machines - Part 1: General requirements
6 Planning

6.1 Information for planning

In the planning and design phase, care must be taken regarding the functions or applications to be executed by the kinematic system. The following conditions can lead to premature wear. They necessitate shorter maintenance intervals and/or earlier exchange of components. In addition, the permissible operating parameters specified in the technical data must be taken into account and observed during planning.

- Continuous operation near temperature limits or in abrasive environments
- Continuous operation close to the performance limits, e.g. high rpm of an axis
- High duty cycle of individual axes
- Monotonous motion profiles, e.g. short, frequently recurring axis motions
- Static axis positions, e.g. continuous vertical position of a wrist axis
- External forces (process forces) acting on the robot

If one or more of these conditions are to apply during operation of the kinematic system, KUKA Deutschland GmbH must be consulted.

If the robot reaches its corresponding operation limit or if it is operated near the limit for a period of time, the built-in monitoring functions come into effect and the robot is automatically switched off.

This protective function can limit the availability of the robot system.

6.2 Mounting base with centering

Description

The mounting base with centering is used when the robot is fastened to the floor, i.e. directly on a concrete foundation.

The mounting base with centering consists of:

- Bedplates
- Resin-bonded anchors (chemical anchors)
- Fastening elements

This mounting variant requires a level and smooth surface on a concrete foundation with adequate load bearing capacity. The concrete foundation must be able to accommodate the forces occurring during operation. There must be no layers of insulation or screed between the bedplates and the concrete foundation.

The minimum dimensions must be observed.
Fig. 6-1: Mounting base

1 Bedplate (4x)
2 Locating pin, cylindrical
3 M24x65-8.8-A2K hexagon bolt with conical spring washer (8x)
4 Resin-bonded anchor (12x)
5 M20 tapped hole for leveling screws (4x)
6 Locating pin, flat-sided

Grade of concrete for foundations

When producing foundations from concrete, observe the load-bearing capacity of the ground and the country-specific construction regulations. There must be no layers of insulation or screed between the bedplate/bedplates and the concrete foundation. The quality of the concrete must meet the requirements of the following standard:

Dimensioned drawing

The following illustration (>>> Fig. 6-2) provides all the necessary information on the mounting base, together with the required foundation data. The specified foundation dimensions refer to the safe transmission of the foundation loads into the foundation and not to the stability of the foundation.
Fig. 6-2: Mounting base, dimensioned drawing

1 Resin-bonded anchor
2 M24x65-8.8-A2K hexagon bolt (8x)
3 Locating pin, cylindrical
4 Locating pin, flat-sided

To ensure that the anchor forces are safely transmitted to the foundation, observe the dimensions for concrete foundations specified in the following illustration.

NOTICE

The dimensions specified for the distance to the edge are valid for non-reinforced or normally reinforced concrete without verification of concrete edge failure. For safety against concrete edge failure in accordance with ETAG 001 Annex C, the concrete foundation must be provided with an appropriate edge reinforcement.

Fig. 6-3: Foundation cross-section
6.3 Machine frame mounting

Description

The machine frame mounting assembly is used when the robot is fastened on a steel structure, a booster frame (pedestal) or a KUKA linear unit. It must be ensured that the substructure is able to withstand safely the forces occurring during operation (foundation loads). The following diagram contains all the necessary information that must be observed when preparing the mounting surface (Fig. 6-4).

The machine frame mounting assembly consists of:

- Locating pins
- Hexagon bolts with conical spring washers

Fig. 6-4: Machine frame mounting

1 M24x65-8.8-A2K hexagon bolt (8x)
2 Locating pin, cylindrical
3 Locating pin, flat-sided

Dimensioned drawing

The following illustration (Fig. 6-5) provides all the necessary information on machine frame mounting, together with the required foundation data.
6.4 Connecting cables and interfaces

Connecting cables

The connecting cables comprise all the cables for transferring energy and data between the robot and the robot controller. They are connected on the robot side with connectors at interface A1. Connection to the controller is always the same, irrespective of the controller variant.

Cable lengths of 7 m, 10 m, 15 m, 20 m, 25 m, 30 m, 35 m and 50 m are available as standard. The maximum length of the connecting cables must not exceed 50 m. Thus if the robot is operated on a linear unit...
which has its own energy supply chain, these cable lengths must also be taken into account.

For the connecting cables, an additional ground conductor is always required to provide a low-resistance connection between the robot and the control cabinet in accordance with DIN EN 60204. The ground conductors are connected via ring cable lugs. The threaded bolts for connecting the two ground conductors are located on the base frame of the robot.

The following points must be observed when planning and routing the connecting cables:

- The bending radius for fixed routing must not be less than 150 mm for motor cables and 60 mm for control cables.
- Protect cables against exposure to mechanical stress.
- Route the cables without mechanical stress – no tensile forces on the connectors.
- Cables are only to be installed indoors.
- Observe the permissible temperature range (fixed installation) of 263 K (-10 °C) to 343 K (+70 °C).
- Route the motor cables and the data cables separately in metal ducts; if necessary, additional measures must be taken to ensure electromagnetic compatibility (EMC).

Interface A1

Interface A1 is located at the rear of the base frame.

![Interface A1](image)

Fig. 6-6: Interface A1

- 1 Control cable X31
- 2 Motor cable X30
- 3 Ground conductor (2x)
- 4 External axis XP8.1 (optional)
- 5 External axis XP7.1 (optional)
Interface for energy supply system

The robot can be equipped with an energy supply system between axis 1 and axis 2 and a second energy supply system between axis 3 and axis 6. The A1 interface required for this is located on the rear of the base frame, the A3 interface is located on the side of the arm and the interface for axis 6 is located on the robot tool. Depending on the application, the interfaces differ in design and scope. They can be equipped e.g. with connections for cables and hoses. Detailed information on the connector pin allocation, threaded unions, etc. is given in separate documentation.
7 Transportation

7.1 Transporting the robot

Before transporting the robot, always move the robot into its transport position. It must be ensured that the robot is stable while it is being transported. The robot must remain in its transport position until it has been fastened in position. Before the robot is lifted, it must be ensured that it is free from obstructions. Remove all transport safeguards, such as nails and screws, in advance. First remove any rust or adhesive on contact surfaces.

Transport position

The robot must be in the transport position (Fig. 7-1) before it can be transported. The robot is in the transport position when the axes are in the following positions:

<table>
<thead>
<tr>
<th>Axis</th>
<th>A1</th>
<th>A2</th>
<th>A3</th>
<th>A4</th>
<th>A5</th>
<th>A6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angle</td>
<td>0°</td>
<td>-135°</td>
<td>+150°</td>
<td>0°</td>
<td>-105°</td>
<td>0°</td>
</tr>
</tbody>
</table>

Fig. 7-1: Transport position

Transport dimensions

The transportation dimensions (Fig. 7-2) for the robot can be noted from the following diagram. The position of the center of gravity and the weight vary according to the specific configuration and the position of axes 2 and 3. The specified dimensions refer to the robot without equipment.
Transportation

The robot can be transported by fork lift truck or using lifting tackle.

WARNING

Use of unsuitable handling equipment may result in damage to the robot or injury to persons. Only use authorized handling equipment with a sufficient load-bearing capacity. Only transport the robot in the manner specified here.

Transportation by fork lift truck

For transport by fork lift truck (>>> Fig. 7-3), four fork slots are mounted on the base frame. The robot can be picked up by the fork lift truck from the front and rear. The base frame must not be damaged when inserting...
the forks into the fork slots. The fork lift truck must have a minimum payload capacity of 2.0 t and an adequate fork length.

NOTICE

Avoid excessive loading of the fork slots through undue inward or outward movement of hydraulically adjustable forks of the fork lift truck. Failure to do so may result in material damage.

Fig. 7-3: Transportation by fork lift truck
8 KUKA Service

8.1 Requesting support

Introduction

This documentation provides information on operation and operator control, and provides assistance with troubleshooting. For further assistance, please contact your local KUKA subsidiary.

Information

The following information is required for processing a support request:

- Description of the problem, including information about the duration and frequency of the fault
- As comprehensive information as possible about the hardware and software components of the overall system

The following list gives an indication of the information which is relevant in many cases:

- Model and serial number of the kinematic system, e.g. the manipulator
- Model and serial number of the controller
- Model and serial number of the energy supply system
- Designation and version of the system software
- Designations and versions of other software components or modifications
- Diagnostic package KRCDiag
 Additionally for KUKA Sunrise: existing projects including applications
 For versions of KUKA System Software older than V8: archive of the software (KRCDiag is not yet available here.)
- Application used
- External axes used

8.2 KUKA Customer Support

Availability

KUKA Customer Support is available in many countries. Please do not hesitate to contact us if you have any questions.

Argentina

Ruben Costantini S.A. (Agentur)
Luis Angel Huergo 13 20
Parque Industrial
2400 San Francisco (CBA)
Argentina
Tel. +54 3564 421033
Fax +54 3564 428877
ventas@costantini-sa.com
Australia

KUKA Robotics Australia Pty Ltd
45 Fennell Street
Port Melbourne VIC 3207
Australia
Tel. +61 3 9939 9656
info@kuka-robotics.com.au
www.kuka-robotics.com.au

Belgium

KUKA Automatisering + Robots N.V.
Centrum Zuid 1031
3530 Houthalen
Belgium
Tel. +32 11 516160
Fax +32 11 526794
info@kuka.be
www.kuka.be

Brazil

KUKA Roboter do Brasil Ltda.
Travessa Claudio Armando, nº 171
Bloco 5 - Galpões 51/52
Bairro Assunção
CEP 09861-7630 São Bernardo do Campo - SP
Brazil
Tel. +55 11 4942-8299
Fax +55 11 2201-7883
info@kuka-roborter.com.br
www.kuka-roborter.com.br

Chile

Robotec S.A. (Agency)
Santiago de Chile
Chile
Tel. +56 2 331-5951
Fax +56 2 331-5952
robotec@robotec.cl
www.robotec.cl

China

KUKA Robotics China Co., Ltd.
No. 889 Kungang Road
Xiaokunshan Town
Songjiang District
201614 Shanghai
P. R. China
Tel. +86 21 5707 2688
Fax +86 21 5707 2603
info@kuka-robotics.cn
www.kuka-robotics.com
Japan
KUKA Japan K.K.
YBP Technical Center
134 Godo-cho, Hodogaya-ku
Yokohama, Kanagawa
240 0005
Japan
Tel. +81 45 744 7531
Fax +81 45 744 7541
info@kuka.co.jp

Canada
KUKA Robotics Canada Ltd.
2865 Argentia Road, Unit 4-5
Mississauga
Ontario L5N 8G6
Canada
Tel. +1 905 858-5852
Fax +1 905 858-8581
KUKAFocusCenter@KUKARobotics.com
www.kukarobotics.ca

Korea
KUKA Robotics Korea Co. Ltd.
RIT Center 306, Gyeonggi Technopark
1271-11 Sa 3-dong, Sangnok-gu
Ansan City, Gyeonggi Do
426-901
Korea
Tel. +82 31 501-1451
Fax +82 31 501-1461
info@kukakorea.com

Malaysia
KUKA Robot Automation (M) Sdn Bhd
South East Asia Regional Office
No. 7, Jalan TPP 6/6
Taman Perindustrian Puchong
47100 Puchong
Selangor
Malaysia
Tel. +60 (03) 8063-1792
Fax +60 (03) 8060-7386
info@kuka.com.my
Mexico
KUKA de México S. de R.L. de C.V.
Progreso #8
Col. Centro Industrial Puente de Vígas
Tlalnepantla de Baz
54020 Estado de México
Mexico
Tel. +52 55 5203-8407
Fax +52 55 5203-8148
info@kuka.com.mx
www.kuka-robotics.com/mexico

Norway
KUKA Sveiseanlegg + Roboter
Sentrumsvægen 5
2867 Hov
Norway
Tel. +47 61 18 91 30
Fax +47 61 18 62 00
info@kuka.no

Austria
KUKA CEE GmbH
Gruberstraße 2-4
4020 Linz
Austria
Tel. +43 732 784 752 0
Fax +43 732 793 880
KUKAAustriaOffice@kuka.com
www.kuka.at

Poland
KUKA CEE GmbH Poland
Spółka z ograniczoną odpowiedzialnością
Oddział w Polsce
Ul. Porcelanowa 10
40-246 Katowice
Poland
Tel. +48 327 30 32 13 or -14
Fax +48 327 30 32 26
ServicePL@kuka.com

Portugal
KUKA Robots IBÉRICA, S.A.
Rua do Alto da Guerra nº 50
Armazém 04
2910 011 Setúbal
Portugal
Tel. +351 265 729 780
Fax +351 265 729 782
info.portugal@kukapt.com
www.kuka.com
KR QUANTEC-2

Russia
KUKA Russia OOO
1-y Nagatinskiy pr-d, 2
117105 Moskau
Russia
Tel. +7 495 665-6241
support.robotics.ru@kuka.com

Sweden
KUKA Svetsanläggningar + Robotar AB
A. Odhners gata 15
421 30 Västra Frölunda
Sweden
Tel. +46 31 7266-200
Fax +46 31 7266-201
info@kuka.se

Switzerland
KUKA Roboter CEE GmbH
Linz, Zweigniederlassung Schweiz
Heinrich Wehrli-Strasse 27
5033 Buchs
Switzerland
Tel. +41 62 837 43 20
info@kuka-roboter.ch

Slovakia
KUKA CEE GmbH
organizačná zložka
Bojnická 3
831 04 Bratislava
Slovakia
Tel. +420 226 212 273
support.robotics.cz@kuka.com

Spain
KUKA Iberia, S.A.U.
Pol. Industrial
Torrent de la Pastera
Carrer del Bages s/n
08800 Vilanova i la Geltrú (Barcelona)
Spain
Tel. +34 93 8142-353
comercial@kukarob.es
South Africa
Jendamark Automation LTD (Agentur)
76a York Road
North End
6000 Port Elizabeth
South Africa
Tel. +27 41 391 4700
Fax +27 41 373 3869
www.jendamark.co.za

Taiwan
KUKA Automation Taiwan Co. Ltd.
1F, No. 298 Yangguang ST.,
Nei Hu Dist., Taipei City, Taiwan 114
Taiwan
Tel. +886 2 8978 1188
Fax +886 2 8797 5118
info@kuka.com.tw

Thailand
KUKA (Thailand) Co. Ltd.
No 22/11-12 H-Cape Biz Sector Onnut
Sukhaphiban 2 road, Prawet
Bangkok 10250
Thailand
Tel. +66 (0) 90-940-8950
HelpdeskTH@kuka.com

Czech Republic
KUKA Roboter CEE GmbH
organizační složka
Pražská 239
25066 Zdíby
Czech Republic
Tel. +420 226 212 273
support.robotics.cz@kuka.com

Hungary
KUKA HUNGÁRIA Kft.
Fö út 140
2335 Taksony
Hungary
Tel. +36 24 501609
Fax +36 24 477031
info@kuka-robotics.hu
USA

KUKA Robotics Corporation
51870 Shelby Parkway
Shelby Township
48315-1787
Michigan
USA
Tel. +1 866 873-5852
Fax +1 866 329-5852
CustomerService@kuka.com
www.kuka.com

United Kingdom

KUKA Robotics UK Ltd
Great Western Street
Wednesbury West Midlands
WS10 7LL
United Kingdom
Tel. +44 121 505 9970
Fax +44 121 505 6589
service@kuka-robotics.co.uk
www.kuka-robotics.co.uk
Index

2006/42/EC:2006 ... 101
2014/68/EU:2014 ... 101
95/16/EC .. 101

A

Accessories ... 89
Angle of rotation ... 51
ANSI/RIA R.15.06-2012 102
Applied norms and regulations 101
Arm ... 11
Automatic mode .. 99
Axis limitation, mechanical 94
Axis range ... 91

B

Base frame ... 11
Brake defect ... 95
Brake release device 94
Braking distance ... 91

C

CE mark .. 90
Center of gravity ... 111
Cleaning work ... 100
Connecting cables ... 14, 89, 107
Counterbalancing system 11, 100
Counterbalancing system, hydropneumatic 11

D

Danger zone .. 91
Declaration of conformity 90
Declaration of incorporation 89, 90
Decommissioning .. 101
Description of the robot system 9
Dimensions, transportation 111
Disposal .. 101
Documentation, industrial robot 5

E

EC declaration of conformity 90
Electrical installations 11
Electromagnetic compatibility (EMC) 102
Electromagnetic compatibility (EMC): 102
EMC Directive .. 90
EN 60204-1:2006/A1:2009 102
EN 61000-6-2:2005 ... 102
EN 61000-6-4:2007 + A1:2011 102
EN ISO 10218-1:2011 102
EN ISO 12100:2010 .. 102
EN ISO 13849-1:2015 101
EN ISO 13849-2:2012 102
EN ISO 13850:2015 .. 101

F

Faults .. 96
Flange loads ... 29
Fork lift truck ... 112
Foundation loads .. 44
Function test ... 98

G

General information 51
General safety measures 95

H

Handling equipment 112
Hazardous substances 101

I

In-line wrist ... 10
Industrial robot ... 89
Intended use ... 90
Interface A1 .. 108
Interface, energy supply system 109
Interfaces ... 107
Introduction .. 5

K

KCP ... 52, 91, 96
Keyboard, external .. 96
KUKA Customer Support 115
KUKA Service .. 115
KUKA smartPAD ... 91
KUKA smartPAD-2 .. 91

L

Labeling .. 95
Liability .. 89
Lifting tackle ... 112
Linear unit .. 89
Link arm .. 11
Low Voltage Directive 90

M

Machine frame mounting 106
Machinery Directive 90, 101
Main axes ... 51
Maintenance ... 99
Manipulator .. 10, 89, 91
Manual mode ... 98

Spez KR QUANTEC-2 V1 | Issued: 12.04.2019
www.kuka.com | 123/124
Maximum supplementary loads..................... 23
Mechanical end stops.................................. 94
Mounting base with centering......................103
Mounting flange.. 10
Mounting flange D=125............................... 27
Mounting flange D=160............................... 28
Mouse, external....................................... 96

O
Operator... .91
Operators... 93
Options.. 11, 89
Overload.. 95

P
Payloads.. 23
Personnel... 92
Planning... 103
Plant integrator..................................... 92
Plates and labels..................................... 47
Positioner... 89
Pressure Equipment Directive.................... 11, 101
Preventive maintenance work................. 100
Product description... 9
Program override, motion velocity........... 51
Protective circuit..................................... 11
Protective equipment, overview............... 93
Purpose... 7

R
Reaction distance................................... 91
Recommissioning..................................... 97
Release device.. 94
Repair... 99
Robot controller..................................... 89
Rotating column....................................... 11

S
Safety.. 89
Safety instructions.................................... 5
Safety of machinery................................. 101, 102
Safety options... 91
Safety zone... 91, 93
Safety, general....................................... 89
Service life... 91
smartPAD.. 52, 91, 96
Software... 89
Start-up.. 97
STOP 0.. 51, 92
STOP 1.. 51, 92
STOP 2.. 92
Stop category 0....................................... 92
Stop category 1....................................... 92
Stop category 2....................................... 92
Stop signal.. 51